The Mouse That Soared

Sep 27, 2004
The mouse that soared

Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars.

Photo: A shock wave traveling through space (NASA/CXC/SAO/B. Gaensler et al.)

Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour.

A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years.

"A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler, lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories."

Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a diameter of about 12 miles. Their formation is associated with a Type II supernova, the collapse and subsequent explosion of a massive star. The origin of a pulsar's high velocity is not known, but many astrophysicists suspect that it is directly related to the explosive circumstances involved in the birth of the pulsar.

The rapid rotation and strong magnetic field of a pulsar can generate a wind of high-energy matter and antimatter particles that rush out at near the speed of light. These pulsar winds create large, magnetized bubbles of high-energy particles called pulsar wind nebulae. The X-ray and radio data on the Mouse have enabled Gaensler and his colleagues to constrain the properties of the ambient gas, to estimate the velocity of the pulsar, and to analyze the structure of the various shock waves created by the pulsar, the flow of particles away from the pulsar, and the magnetic field in the nebula.

Other members of the research team were Eric van der Swaluw (FOM Institute of Physics, The Netherlands), Fernando Camilo (Columbia Univ., New York), Vicky Kaspi (McGill Univ., Montreal), Frederick K. Baganoff (MIT, Cambridge, Mass.), Farhad Yusef-Zadeh (Northwestern), and Richard Manchester (Australia Telescope National Facility). The pulsar in the Mouse was originally detected by Camilo et al. in 2002 using Australia's Parkes radio telescope. Chandra observed The Mouse on October 23 and 24, 2002.

NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

About The Mouse:

The Mouse, a.k.a. G359.23-0.82, gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. The image — a composite X-ray (gold) and radio (blue) — shows a close-up of the head of the Mouse where a shock wave has formed as the young pulsar plows supersonically through interstellar space.

The X-ray cloud consists of high-energy particles swept back by the pulsar's interaction with the interstellar gas. Near the front of the cloud an intense X-ray source marks the location of the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of less energetic, radio-wave-emitting particles envelopes the X-ray cloud.

Pulsars are rapidly spinning, highly magnetized, neutron stars. Their formation is associated with the collapse and explosion of a massive star. Most pulsars get accelerated to a high speed by some mechanism — presumably related to the explosion — that is still unknown. Winds of high-energy particles from pulsars create large, magnetized clouds of high-energy particles called pulsar wind nebulae.

A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space. In effect, it presents astronomers with a supersonic cosmic wind tunnel that they can use to estimate the speed of the pulsar and to study the effects of the pulsar's motion on its pulsar wind nebula.

Source: NASA

Explore further: Computer model shows moon's core surrounded by liquid and it's caused by Earth's gravity

add to favorites email to friend print save as pdf

Related Stories

Physicists discuss quantum pigeonhole principle

11 hours ago

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

Giant crater in Russia's far north sparks mystery

13 hours ago

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

14 hours ago

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Recommended for you

Comet Jacques makes a 'questionable' appearance

14 hours ago

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

Image: Our flocculent neighbour, the spiral galaxy M33

15 hours ago

The spiral galaxy M33, also known as the Triangulum Galaxy, is one of our closest cosmic neighbours, just three million light-years away. Home to some forty billion stars, it is the third largest in the ...

Titan offers clues to atmospheres of hazy planets

15 hours ago

When hazy planets pass across the face of their star, a curious thing happens. Astronomers are not able to see any changes in the range of light coming from the star and planet system.

Having fun with the equation of time

15 hours ago

If you're like us, you might've looked at a globe of the Earth in elementary school long before the days of Google Earth and wondered just what that strange looking figure eight thing on its side was.

User comments : 0