Mars Express latest findings give hints about water loss in the Martian atmosphere

Sep 27, 2004
Mars Express latest findings give hints about water loss in the Martian atmosphere

Recent results from the ASPERA-3 instrument on board Mars Express confirm that a very efficient process is at work in the Martian atmosphere which could explain the loss of water. Water is believed to have once been abundant on the Red Planet. Professor Rickard Lundin, leader of the ASPERA-3 team, describes these findings in a paper published in the latest issue of Science.

Mars is bombarded by a flood of charged particles from the Sun, commonly called the ‘solar wind’ and consisting of electrons and alpha particles. The solar wind erodes the atmosphere of Mars, and is believed to have stripped away a large amount of water that was present on the planet about 3.8 billion years ago. Geological evidence, as recently confirmed by images from the High Resolution Stereo Camera (HRSC) onboard Mars Express, indicates that water flows and even an ocean in the Northern hemisphere shaped the surface of Mars.

Today, water still exists on the Red Planet, but less than in the past. Observations made earlier this year by the OMEGA instrument on Mars Express showed that Mars has vast fields of perennial water ice, stretching out from its south pole.

The ASPERA-3 instrument on board Mars Express aims to answer the question of whether the solar wind interaction with the upper atmosphere of Mars contributes to the depletion of water. It is measuring a process called ‘solar wind scavenging’, or the slow ‘invisible’ escape of volatile gases and liquid compounds which make up the atmosphere and hydrosphere of a planet. Using plasma spectrometers and a special imager to detect energetic neutral atoms, ASPERA-3 is making global and simultaneous measurements of the solar wind, the inflow of energetic particles, and also the ‘planetary wind’, which is the outflow of particles from the Martian atmosphere and ionosphere.

Aspera 3 has established that the solar wind penetrates through the ionosphere and very deeply into the Martian atmosphere down to an altitude of 270 kilometres. This seems to be the reason for the acceleration processes that cause the loss of atmosphere on Mars.

Source: ESA

Explore further: Start of dwarf planet mission delayed after small mix-up

Related Stories

The solar system and beyond is awash in water

Apr 08, 2015

As NASA missions explore our solar system and search for new worlds, they are finding water in surprising places. Water is but one piece of our search for habitable planets and life beyond Earth, yet it links ...

Mars has belts of glaciers consisting of frozen water

Apr 07, 2015

Mars has distinct polar ice caps, but Mars also has belts of glaciers at its central latitudes in both the southern and northern hemispheres. A thick layer of dust covers the glaciers, so they appear as surface ...

The pale blue dot and other 'selfies' of Earth

Apr 06, 2015

Twenty-five years ago a set of images were taken that provided a unique view of Earth and helped highlight the fragility of our existence, and the importance of our stewardship.

Recommended for you

The riddle of galactic thin–thick disk solved

Apr 24, 2015

A long-standing puzzle regarding the nature of disk galaxies has finally been solved by a team of astronomers led by Ivan Minchev from the Leibniz Institute for Astrophysics Potsdam (AIP), using state-of-the-art ...

Giant cosmic tsunami wakes up comatose galaxies

Apr 24, 2015

Galaxies are often found in clusters, with many 'red and dead' neighbours that stopped forming stars in the distant past. Now an international team of astronomers, led by Andra Stroe of Leiden Observatory ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.