Life on the edge: To disperse, or become extinct?

Jun 23, 2008
Eckert Dispersal Study --Seed Pods
Plants at range limits produce seeds with larger wings, Dr. Eckert discovered. Credit: Queen's University

Plants existing at the edges of their natural habitats may enhance survival of the species during global warming, says Queen's prof
The hardiest plants and those most likely to survive the climatic shifts brought about by global warming are now easier to identify, thanks to new research findings by a team from Queen's University.

"Predicting the speed at which plants are likely to migrate during climate warming could be key to ensuring their survival," says Queen's Biology professor Christopher Eckert.

Populations of plants growing at the outer edges of their natural "geographic range" exist in a precarious balance between extinction of existing populations and founding of new populations, via seed dispersal into vacant but suitable habitat. "Policy makers concerned with preserving plant species should focus not only on conserving land where species are now, but also where they may be found in the future," says Dr. Eckert.

This observation stems from his recent study – published in the scientific journal New Phytologist – which shows for the first time that natural selection gives a boost to the seed dispersal traits of those plants growing at the edges of their natural ranges.

If species are going to persist in the face of a changing climate, they must move to stay within the climate zone to which they are best adapted, Dr. Eckert explains. Their ability to relocate with shifts in regional climate brought about by global warming will largely depend on their capacity for dispersal, especially in populations near the limit of their geographical distributions.

With undergraduate student Emily Darling and PhD student Karen Samis, Dr. Eckert studied the geographic distribution and dispersal biology of Abronia umbellata (pink sand verbena), a flowering plant endemic to the Pacific coastal dunes of North America. By surveying plants throughout the 2000-km geographic range, and measuring seed dispersal with a wind tunnel in the Faculty of Applied Sciences, they showed that plants at range limits produce seeds with larger wings, thus increasing dispersal in the winds that commonly buffet costal habitats.

"The way evolution works at range limits has been brought into sharper focus by the debate over how species will respond via migration to climate warming," says Dr. Eckert. "It's clear that these marginal populations are adapted in ways that more central populations aren't."

According to Cornell University biologist Monica Geber, in an editorial focused on this new research, the Queen's team has "flipped the question of dispersal limitation on its head to ask whether range-edge populations have diverged, through adaptive evolution, from central populations to increase their colonizing ability."

There has been considerable debate as to whether these northern peripheral populations are worth conserving, Dr. Eckert notes. If they possess adaptations that will enhance their ability to expand their range during climate change, then the answer is yes, he says. His team has recently shown that in Vaccinium stamineum (deerberry) – a threatened plant related to the blueberry – the capacity for seed dispersal appears to increase sharply towards the range limit in Canada.

In addition, some threatened Canadian populations produce high-quality seeds that exhibit rapid germination and particularly high seedling growth.

"These observations are consistent with our work on coastal dune plants, suggesting that our results may have general relevance and significance for species conservation in changing global environments" says Dr. Eckert.

Source: Queen's University

Explore further: Declining catch rates in Caribbean green turtle fishery may be result of overfishing

add to favorites email to friend print save as pdf

Related Stories

Seed workshop bears conservation fruits 

Apr 07, 2014

Researchers have pooled their expertise to investigate factors that affect the survival of seeds, resulting in a framework that can help both eradicate weeds and maintain desirable plant populations.

Plants compete for friendly ants

Feb 10, 2014

(Phys.org) —Many woodland plants rely on ants to disperse their seeds; such seed dispersal increases the plant population's chance of survival. Robert Warren, assistant professor of biology, has recently ...

Recommended for you

Chimpanzees prefer firm, stable beds

1 hour ago

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

2 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

3 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Hoarsesenz
not rated yet Jan 07, 2009
Not biology, so much as systems analysis. Why (at least according to this brief article synopsis) this is significant in biological terms is not explained. Are fringe areas part of some "plan"? Or just an accident on the part of a plant that hasn't evolved sufficiently to specialize? Or completely accidental and not any part of the plants' historical survivability?

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

IBM posts lower 1Q earnings amid hardware slump

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exasperated by weaker demand in China and emerging markets.