Test of bacteria toxin delivery system could pave way for new antibiotic drugs

Jun 16, 2008
Test of bacteria toxin delivery system could pave way for new antibiotic drugs
Scanning electron microscopy image of bacteria (the cylindrical objects) attached to host cells. These bacteria are in the process of injecting the host cells with the toxins. Credit: Hebrew University illustration

Researchers at the Hebrew University of Jerusalem have achieved a breakthrough in monitoring the toxin-delivery system of highly pathogenic bacteria – an accomplishment that could help pave the way for new drugs that will be capable of neutralizing those germs.

Most bacteria are harmless and do not cause infections. Some, however, are pathogenic and are equipped with special accessories that are used to deliver toxins (also termed "effectors") into the cells of the infected person.

Numerous bacteria that cause disease, ranging from food poisoning to life threatening infection, employ a syringe-like nano-organelle (a specialized part of a cell having a specific function) that is used to inject toxic effectors into attacked host cells. This process is termed a type III secretion system (TTSS). Among these pathogens are Salmonella; the cause of typhoid fever, Yersinia; and enteropathogenic (intestinal) E. coli, which is responsible for the death of up to one million infants per year, mostly in developing countries.

The bacterial syringe employed by these bacteria is an excellent potential target for drugs (not yet available) to combat these diseases. In order to develop such drugs, however, a better understanding of the syringe functions is needed, requiring development of better methods for measuring the syringe activity.

The Hebrew University researchers – Ilan Rosenshine, the Etta Rosensohn Professor of Bacteriology at the Hebrew University Faculty of Medicine, and his associates -- Erez Mills, Kobi Baruch, Xavier Charpentier and Simi Kobi -- have designed a new, real-time test that allows monitoring the syringe activity. Using this test, they have discovered new properties of this system, which might be used to develop drugs that will inhibit the syringe activity and thereby prevent disease and infection by these dangerous pathogens

Their achievement was described in a recent article in the journal Cell Host & Microbe.

Source: The Hebrew University of Jerusalem

Explore further: New study charts the global invasion of crop pests

add to favorites email to friend print save as pdf

Related Stories

Revealing the weapons by which bacteria fight each other

Apr 04, 2013

A new study which was performed jointly at Umea University and the University of Washington in Seattle, USA, discovered that bacteria can degrade the cell membrane of bacterial competitors with enzymes that do not harm their ...

Slow-release 'jelly' delivers peptide drugs better

Jan 28, 2013

Duke University biomedical engineers have developed a new delivery system that overcomes the shortcomings of a promising class of peptide drugs – very small proteins – for treating diseases such as diabetes and cancer.

Zooming in on bacterial weapons in 3-D

May 21, 2012

The plague, bacterial dysentery, and cholera have one thing in common: These dangerous diseases are caused by bacteria which infect their host using a sophisticated injection apparatus. Through needle-like ...

Recommended for you

New study charts the global invasion of crop pests

8 hours ago

Many of the world's most important crop-producing countries will be fully saturated with pests by the middle of the century if current trends continue, according to a new study led by the University of Exeter.

Zambia lifts ban on safari hunting

10 hours ago

Zambia has lifted a 20-month ban on safari hunting because it has lost too much revenue, but lions and leopards will remain protected, the government said Wednesday.

Wolves susceptible to yawn contagion

13 hours ago

Wolves may be susceptible to yawn contagion, according to a study published August 27, 2014 in the open-access journal PLOS ONE by Teresa Romero from The University of Tokyo, Japan, and colleagues.

User comments : 0