Fair Trade: Lanthanum chloride catalyzes hydrogen–chlorine exchange between chlorinated hydrocarbons

Jun 16, 2008

Because of its toxicity and the dangers involved in handling it, tetrachloromethane (carbon tetrachloride, CCl4) can no longer be used or produced in many countries. However, the processes used in the production of other chlorinated hydrocarbons, such as chloroform (trichloromethane, CHCl3), also produce CCl4 as a byproduct. What is the best way to get rid of this unwanted substance?

A team headed by Bert M. Weckhuysen at the University of Utrecht (Netherlands) has now found an interesting new approach that may lead to effective recycling. As the researchers report in the journal Angewandte Chemie, a lanthanum chloride catalyst induces CCl4 and its reaction partner dichloromethane (CH2Cl2) to exchange one chlorine atom for a hydrogen atom, forming nearly 100 % of the desired CHCl3.

In order to increase the catalyst surface, lanthanum chloride (LaCl3) was deposited onto carbon nanofiber supports. This results in a highly active, selective, and stable catalyst to facilitate the hydrogen–chlorine exchange between CCl4 and CH2Cl2.

“Computer calculations suggest,” says Weckhuysen, “that the mechanism occurs by way of two separate hydrogen–chlorine exchange reactions.”

It appears that the surface of the LaCl3 catalyst contains not only the terminal chlorine atoms of the crystal lattice, but also other weakly adsorbed species. CH2Cl2 swaps one of its hydrogen atoms for one such weakly bound chlorine atom. It leaves behind the hydrogen atom, which is in turn weakly adsorbed to the catalyst surface. This hydrogen atom can be taken up by CCl4, which in turn leaves one of its chlorine atoms behind on the catalyst surface. Both of these reaction steps produce chloroform exclusively; no byproducts come into play.

This new catalytic reaction is astonishing in that it was previously assumed that the presence of oxygen—either in the gas phase or bound to the crystal lattice of the catalyst—is required for such reactions. Says Weckhuysen: “We are reporting for the first time a lanthanum-based catalyst material that can activate both C-H and C-Cl bonds in the absence of oxygen.”

Citation: Bert M. Weckhuysen, Catalytic Hydrogen-Chlorine Exchange between Chlorinated Hydrocarbons under Oxygen-Free Conditions, Angewandte Chemie International Edition 2008, 47, No. 27, 5002–5004, doi: 10.1002/anie.200800270

Source: Angewandte Chemie

Explore further: New technique reveals immune cell motion through variety of tissues

add to favorites email to friend print save as pdf

Related Stories

Tag Heuer changes tune, now looking at smartwatches

13 minutes ago

Barely a few months after dismissing Apple's smartwatch, the new chief executive of luxury Swiss watchmaker Tag Heuer conceded Tuesday that such a hi-tech gadget might after all have a place in his firm's line-up.

Artist's 'Angry Birds' lawsuit goes forward

23 minutes ago

A federal judge refused to dismiss a lawsuit by a Seattle artist who says she was cheated out of millions of dollars when the company that sold her line of plush pet toys called "Angry Birds" reached a deal with the Finnish ...

After Google, Dutch privacy watchdog probes Facebook

36 minutes ago

The Dutch government-affiliated watchdog said Tuesday it is probing changes in Facebook's privacy policy, the latest skirmish in a wider fight over the commercial use of online personal data.

Recommended for you

'Global positioning' for molecules

19 hours ago

In everyday life, the global positioning system (GPS) can be employed to reliably determine the momentary location of one en route to the desired destination. Scientists from the Institute of Physical and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.