Arsenic and new rice

Jun 10, 2008

Amid recent reports of dangerous levels of arsenic being found in some baby rice products, scientists have found a protein in plants that could help to reduce the toxic content of crops grown in environments with high levels of this poisonous metal. Publishing in the open access journal BMC Biology, a team of Scandinavian researchers has revealed a set of plant proteins that channel arsenic in and out of cells.

Arsenic is acutely toxic and a highly potent carcinogen, but is widespread in the earth's crust and easily taken up and accumulated in crops. Contaminated water is the main source of arsenic poisoning, followed by ingestion of arsenic-rich food, especially rice that has been irrigated with arsenic-contaminated water. According to the WHO, arsenic has been found approaching or above guideline limits in drinking water in Argentina, Australia, Bangladesh, Chile, China, Hungary, India, Mexico, Peru, Thailand, and the US.

Until now, scientists have been unable to identify which proteins are responsible for letting arsenite, the form of arsenic that damages cellular proteins, into plant cells. Now Gerd Bienert and his colleagues from the University of Copehangen, Denmark and the University of Gothenburg, Sweden, are the first to show that a family of transporters, called nodulin26-like intrinsic protein (NIPs), can move arsenite across a plant cell membrane. NIPs are related to aquaglyceroporins found in microbes and mammalian cells and which have already been shown to function as arsenite channels in these other organisms.

Bienert's team put the plant genes coding for different NIP transporters into yeast cells in order to test the cells for arsenic sensitivity. The researchers found that the growth of yeast containing certain plant NIPs was suppressed when arsenite, one of the predominant forms of arsenic found in soil, was added to the mix. They showed that the arsenite was channelled by NIPs and accumulated inside the yeast cells. Further investigations showed that only a subgroup of NIPs had arsenite transport capabilities, and have now been identified as metalloid channels in plants.

More surprisingly, the researchers also found that when they added arsenate some yeast, cells actually grew better and arsenite was released out of the cells. "It appears that some NIPs don't just transport arsenite in one direction", says Bienert. "They are bidirectional and, given the right conditions, can clear cells of toxic arsenite as well as accumulate it. This striking exit of the accumulated arsenite in cells could have an important role to play in the detoxification of plants, especially coupled with possibility of engineering a transporter that discriminates against arsenite uptake in the first place."

Source: BioMed Central

Explore further: Monkeys fear big cats less, eat more, with humans around

add to favorites email to friend print save as pdf

Related Stories

Ex-Qualcomm exec pleads guilty to insider trading

7 hours ago

A former high-ranking executive of US computer chip giant Qualcomm pleaded guilty Monday to insider trading charges, including trades on a 2011 deal for Atheros Communications, officials said.

Media venture creates press litigation fund

7 hours ago

The media venture created by entrepreneur Pierre Omidyar said Monday it was establishing a fund to help defend journalists in cases involving freedom of the press.

'Moral victories' might spare you from losing again

7 hours ago

It's human nature to hate losing. Unfortunately, it's also human nature to overreact to a loss, potentially abandoning a solid strategy and thus increasing your chances of losing the next time around.

Recommended for you

Monkeys fear big cats less, eat more, with humans around

17 minutes ago

Some Monkeys in South Africa have been found to regard field scientists as human shields against predators and why not if the alternative is death by leopard? The researchers found the monkeys felt far safer ...

Study indicates large raptors in Africa used for bushmeat

13 hours ago

Bushmeat, the use of native animal species for food or commercial food sale, has been heavily documented to be a significant factor in the decline of many species of primates and other mammals. However, a new study indicates ...

The microbes make the sake brewery

14 hours ago

A sake brewery has its own microbial terroir, meaning the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor according to research published ahead of print ...

Fighting bacteria—with viruses

15 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

User comments : 0