New Fingerprint Breakthrough by Forensic Scientists

Jun 02, 2008

Forensic scientists at the University of Leicester, working with Northamptonshire Police, have announced a major breakthrough in crime detection which could lead to hundreds of cold cases being reopened.

The University’s Forensic Research Centre has been working with Northamptonshire Police’s scientific support unit to develop new ways of taking fingerprints from a crime scene.

Researchers in the University Department of Chemistry and the Police’s scientific support unit have developed the method that enables scientists to ‘visualise fingerprints’ even after the print itself has been removed. They conducted a study into the way fingerprints can corrode metal surfaces. The technique can enhance – after firing– a fingerprint that has been deposited on a small calibre metal cartridge case before it is fired.

Dr John Bond, Honorary Fellow at the University of Leicester and Scientific Support Manager at Northamptonshire Police said: “For the first time we can get prints from people who handled a cartridge before it was fired.”

"Wiping it down, washing it in hot soapy water makes no difference - and the heat of the shot helps the process we use.

“The procedure works by applying an electric charge to a metal - say a gun or bullet - which has been coated in a fine conducting powder, similar to that used in photocopiers.

“Even if the fingerprint has been washed off, it leaves a slight corrosion on the metal and this attracts the powder when the charge is applied, so showing up a residual fingerprint.

“The technique works on everything from bullet casings to machine guns. Even if heat vaporises normal clues, police will be able to prove who handled a particular gun.”

Dr. Bond’s initial findings, which prompted the joint study, have been announced in a paper in the American Journal of Forensic Science.

Professor Rob Hillman of the Department of Chemistry added: “It is very satisfying to see excellent fundamental science being applied to a practical problem. We are delighted to have the opportunity to collaborate with Dr. Bond and his colleagues and we look forward to some very exciting chemistry and its application to forensic science.”

As a result of the research, cases dating back decades could be reopened because the underlying print never disappears, say the scientists. The technique also works in cases where prints may be left on other metals.

Dr Bond added: "It's certainly possible hundreds of cold cases could be reopened because with this method the only way to avoid a fingerprint being detected is through abrasive cleaning as that takes a layer off the metal.

Dr Emma Palmer, Director of the University's Forensic Research Centre said: “This collaboration between the University of Leicester and Northamptonshire Police is an excellent example of applying research to a practical problem in crime detection.”

Dr Bond and Professor Rob Hillman of the Chemistry Department at the University now intend to take this research forward via a three-year Ph.D. studentship to commence next academic year. The new project will explore further the corrosion of metal by fingerprint residue and investigate how it might be used to detect more crime with forensic science.

Source: University of Leicester

Explore further: Material prevents plastic from ageing, offering environmental and cost savings for the energy industry

add to favorites email to friend print save as pdf

Related Stories

Amino acid fingerprints revealed in new study

Apr 06, 2014

Some three billion base pairs make up the human genome—the floor plan of life. In 2003, the Human Genome Project announced the successful decryption of this code, a tour de force that continues to supply ...

Scientists solve riddle of celestial archaeology

Mar 26, 2014

A decades old space mystery has been solved by an international team of astronomers led by Professor Martin Barstow of the University of Leicester and President-elect of the Royal Astronomical Society.

A grand unified theory of exotic superconductivity?

Oct 17, 2013

(Phys.org) —Years of experiments on various types of high-temperature (high-Tc) superconductors—materials that offer hope for energy-saving applications such as zero-loss electrical power lines—have ...

Recommended for you

Mantis shrimp stronger than airplanes

18 hours ago

(Phys.org) —Inspired by the fist-like club of a mantis shrimp, a team of researchers led by University of California, Riverside, in collaboration with University of Southern California and Purdue University, ...

The anti-inflammatory factory

Apr 22, 2014

Russian scientists, in collaboration with their colleagues from Pittsburgh University, have discovered how lipid mediators are produced. The relevant paper was published in Nature Chemistry. Lipid mediators are molecules that p ...

New mineral shows nature's infinite variability

Apr 22, 2014

(Phys.org) —A University of Adelaide mineralogy researcher has discovered a new mineral that is unique in structure and composition among the world's 4,000 known mineral species.

User comments : 0

More news stories

Mantis shrimp stronger than airplanes

(Phys.org) —Inspired by the fist-like club of a mantis shrimp, a team of researchers led by University of California, Riverside, in collaboration with University of Southern California and Purdue University, ...

The anti-inflammatory factory

Russian scientists, in collaboration with their colleagues from Pittsburgh University, have discovered how lipid mediators are produced. The relevant paper was published in Nature Chemistry. Lipid mediators are molecules that p ...

Robot scouts rooms people can't enter

(Phys.org) —Firefighters, police officers and military personnel are often required to enter rooms with little information about what dangers might lie behind the door. A group of engineering students at ...

In the 'slime jungle' height matters

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

ESA's weightless plants fly on a Dragon

(Phys.org) —It is a race against time for ESA's Gravi-2 experiment following launch last Friday on the Dragon space ferry. Stowed in Dragon's cargo are lentil seeds that will be nurtured into life on the ...