Statistical tool could explain gene study variations

May 28, 2008
Statistical Tool Could Explain Gene Study Variations
Dr. Hongyan Xu, a Medical College of Georgia biostatistician, is using statistics to explain variations in genome-wide association studies. Credit: Phil Jones, MCG campus photographer

While scientists are using the human genome to associate certain genes with disease, Dr. Hongyan Xu wants to ensure they are accounting for natural variations in those genes.

"These differences can create some challenges in analyzing data," says Dr. Xu, biostatistician in the Medical College of Georgia School of Graduate Studies. "There is always some difference in ethnic backgrounds across a study population."

For instance, a study looking at a population of blacks from Augusta and blacks from Chicago wouldn't necessarily take into account the difference in subpopulations, he says.

"Some groups of blacks could have different degrees of ancestry from different African groups," he says. "Some populations of blacks have different skin tones, which indicate a difference in genetic makeup. That isn't always taken into account."

Scientists use genome-wide association studies to compare the genes of people with health conditions to the genes of healthy people, thereby better understanding basic biological processes that affect health and possibly how to better diagnose and treat disease.

Some studies account for differences by using control groups who self-report similar ethnicities. But there can be wide variations because people are not always completely aware of their ancestry, Dr. Xu says.

A computer-based statistical tool could be the answer, he says.

Dr. Xu and colleagues will start by examining an existing database from an ongoing association study of stroke risk in black children. That study, conducted by Dr. Abdullah Kutlar, hematologist/oncologist and director of the MCG Sickle Cell Center, aims to understand the genetics of stroke risk in children with sickle cell disease. With funding from the National Institutes of Health, Dr. Xu and his team will take a closer look at children already identified as high-risk because of high blood flow velocity in the brain, as measured by transcranial Doppler tests.

Previous MCG research identified high-velocity blood flow as a risk factor for stroke and regular blood transfusions as a way to reduce that risk.

"While Dr. Kutlar is looking for the underlying genetic reasons for the higher stroke risks in this sample of patients, we will be looking for ways to identify the subpopulations in that sample," Dr. Xu says. "If population structure isn't taken into account, it could affect the validity of study results."

Researchers will use a statistical approach known as coalescent theory, which traces coding sequences of genes in a population sample to a single ancestral copy of a gene. That gene would theoretically be copied in the genetics of every member of an identical population.

For instance, two people with almost identical sets of chromosomes could differ in a very small way – by one structural unit that binds their DNA. By tracing it back, researchers would reach a point where the "copied" gene would not be present. That would indicate the point where two lineages joined, Dr. Xu says.

Genetic differences among the two populations could then be tagged, subcategorized and accounted for in study results, he says.

"With the coalescent theory, we focus on the samples rather than the whole population," Dr. Xu says. "That way, we can generate samples with various levels of population structure with great efficiency using computers, which are important for large-scale genome-wide studies. Understanding the genetic basis for disease is key to prevention, diagnosis and effective treatment. Developing a method that accounts for variations in the genetics of people who are similar but distinct is crucial to better understanding the genetics of health."

Source: Medical College of Georgia

Explore further: How can we avoid kelp beds turning into barren grounds?

add to favorites email to friend print save as pdf

Related Stories

Scientists unlock a 'microbial Pompeii'

Feb 23, 2014

An international team of researchers have discovered a 'microbial Pompeii' preserved on the teeth of skeletons around 1,000 years old. The key to the discovery is the dental calculus (plaque) which preserves bacteria and ...

Why are aspen dying?

Jul 01, 2013

(Phys.org) —If Utah's quaking aspen appear to be quaking more than usual this summer, the trees have reason to tremble, says a Brigham Young University biologist. In dappled forests across the West, aspen ...

Recommended for you

Parasitic worm genomes: largest-ever dataset released

7 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Male sex organ distinguishes 30 millipede species

7 hours ago

The unique shapes of male sex organs have helped describe thirty new millipede species from the Great Western Woodlands in the Goldfields, the largest area of relatively undisturbed Mediterranean climate ...

How can we avoid kelp beds turning into barren grounds?

11 hours ago

Urchins are marine invertebrates that mould the biological richness of marine grounds. However, an excessive proliferation of urchins may also have severe ecological consequences on marine grounds as they ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.