Protein plays key role in transmitting deadly malaria parasite

May 28, 2008

The protein MAEBL is critical for completing the life cycle of malaria parasites in mosquitoes, allowing the insects to transmit the potentially deadly infection to humans, a University of South Florida study has shown. The research may ultimately help provide a way to better control malaria by blocking development of the malaria parasite in the mosquito.

Researchers with the USF Global Health Infectious Diseases Research team found that the transmembrane protein MAEBL is required for the infective stage of the malaria parasite Plasmodium falciparum to invade the mosquito’s salivary glands. Their findings were published May 28 in the online journal PLoS ONE.

“The mosquito is the messenger of death,” said the study’s principal investigator John Adams, PhD, professor of global health at the USF College of Public Health. “If we could eliminate the parasite from the mosquito, people wouldn’t become infected.”

Plasmodium falciparum causes three-quarters of all malaria cases in Africa, and 95 percent of malaria deaths worldwide. It is transmitted to humans by the bite of an infected mosquito, which injects the worm-like, one-celled malaria parasites from its salivary glands into the person’s bloodstream.

The study was done by genetically modifying the malaria parasites and feeding them in a blood meal to uninfected mosquitoes. Parasites in which MAEBL was deleted were not harbored in the salivary glands of mosquitoes, even though an earlier form of these parasites was observed in the gut of the mosquitoes. The researchers concluded that the transmembrane form of MAEBL is essential for the parasite to enter the mosquito’s salivary glands.

While more studies are needed, lead author Fabian Saenz, PhD, said the finding suggests that silencing the receptor for MAEBL in the mosquito salivary gland might block passage of the parasite through the mosquito, thereby preventing human infection through mosquito bites.

“Our study shows that MAEBL is a weak link in the parasite’s biology,” Dr. Adams said. “This could provide a potential way to block transmission in the mosquito, before the parasite ever has a chance to infect a new person. It is better to prevent the malaria infection from occurring in the first place than having to kill the parasite already inside humans with vaccines or drugs.”

Source: University of South Florida Health

Explore further: Breaking down DNA by genome

add to favorites email to friend print save as pdf

Related Stories

Climate change alters the ecological impacts of seasons

Oct 09, 2014

If more of the world's climate becomes like that in tropical zones, it could potentially affect crops, insects, malaria transmission, and even confuse migration patterns of birds and mammals worldwide. George ...

An easier way to manipulate malaria genes

Aug 11, 2014

Plasmodium falciparum, the parasite that causes malaria, has proven notoriously resistant to scientists' efforts to study its genetics. It can take up to a year to determine the function of a single gene, ...

Recommended for you

Breaking down DNA by genome

53 minutes ago

New DNA sequencing technologies have greatly advanced genomic and metagenomic studies in plant biology. Scientists can readily obtain extensive genetic information for any plant species of interest, at a relatively low cost, ...

Is fleet diversity key to sustainable fisheries?

7 hours ago

Concern about fisheries is widespread around the world. Over the past several decades, a robust discussion has taken place concerning how to manage fisheries better to benefit ecosystems and humans. Much of the discussion ...

Strange, fanged deer persists in Afghanistan

8 hours ago

More than 60 years after its last confirmed sighting, a strange deer with vampire-like fangs still persists in the rugged forested slopes of northeast Afghanistan according to a research team led by the Wildlife ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.