Olfactory receptor neurons select which odor receptors to express

May 28, 2008

It may appear difficult to reconcile the fact that almost every cell in the body of an animal has an identical dose of genes with the variety of different appearances and properties cells can display—bone, skin, hair, muscle, and many more. This may seem even more complex given that all of these tissue types derive originally from a single fertilized egg cell. Understanding the many regulatory mechanisms that create different cells from a single template is the work of developmental biology.

A new paper published this week in the open-access journal PLoS Biology looks at this problem in the olfactory system of the fruit fly, where the ability to discriminate odors depends on receptor cells expressing different patterns of receptor genes, despite each cell having the same set of genes to choose from. The paper, by Anandasankar Ray and colleagues at Yale University, shows that receptor patterns are controlled by DNA sequences upstream of the receptor genes.

In the fruit fly Drosophila, there are two organs involved in smell: the antennae and the maxillary palps—the latter being part of the mouth. In these palps, there are always six types of neurons, cells that transmit information from the sensing part to the brain. Each type of neuron has a different, predictable pattern of olfactory receptors. How a neuron knows which receptors to express was, until now, a mystery.

By comparing the recently published genetic sequences of 12 species of Drosophila, Ray and colleagues identified regions of DNA near the receptor genes that are almost identical in all species. They hypothesized that these represented control regions, which are important for determining how genes are expressed. By altering the control regions experimentally, they have shown that this is true; these highly conserved regions act like zip codes, determining where the receptors end up. Interestingly, some regions positively regulate gene expression: when they are damaged, the receptor fails to be expressed in neurons where it would normally appear. Other regions negatively regulate receptor expression (stopping receptors from appearing in the wrong neurons) so that when the regulator is experimentally blocked, the related receptor appears in more neurons than it should.

Interestingly, the regulatory sequences identified in this study may also have another role in the nervous system. These controlling elements might also be apparent in the process of axon guidance, which connects the olfactory neurons to neurons in the antennae. This complex connection suggests that the process goes beyond the expression of olfactory neurons, and also contributes to the design and development of the fruit fly’s greater nervous system.

Citation: Ray A, van der Goes van Naters W, Carlson JR (2008) A regulatory code for neuron-specific odor receptor expression. PLoS Biol 6(5): e125. doi:10.1371/journal.pbio.0060125

Source: Public Library of Science

Explore further: Diabetes drug found in freshwater is a potential cause of intersex fish

Related Stories

Quantum dot TVs are unveiled at China tech expo

8 hours ago

At this month's China Information Technology Expo (CITE) event, a headline-maker was the launch of quantum dot televisions, by QD Vision and Konka, the consumer electronics company. QD Vision's calling card ...

A call to US educators: Learn from Canada

11 hours ago

As states and the federal government in the U.S. continue to clash on the best ways to improve American education, Canada's Province of Ontario manages successful education reform initiatives that are equal parts cooperation ...

Recommended for you

York's anti-malarial plant given Chinese approval

Apr 24, 2015

A new hybrid plant used in anti-malarial drug production, developed by scientists at the University of York's Centre for Novel Agricultural Products (CNAP), is now registered as a new variety in China.

The appeal of being anti-GMO

Apr 24, 2015

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.