Glowing films reveal traces of explosives

May 23, 2008

New spray-on films developed by UC San Diego chemists will be the basis of portable devices that can quickly reveal trace amounts of nitrogen-based explosives.

Contaminated fingerprints leave dark shadows on the films, which glow blue under ultraviolet light. One of the films can distinguish between different classes of explosive chemicals, a property that could provide evidence to help solve a crime, or prevent one.

A recent episode of CSI: Miami featured the technology, which linked fingerprints left on a video camera to a bomb used in a bank heist, revealing the motive for the robbery. In real life, the security systems company RedXDefense has developed a portable kit based on the technology that security officers could use with minimal training.

Detection relies on fluorescent polymers developed at UCSD by chemistry and biochemistry professor William Trogler and graduate student Jason Sanchez. “It’s a very intuitive detection method that doesn’t require a scientist to run,” Trogler said.

Sanchez and Trogler describe the synthesis and properties of their polymers in a forthcoming issue of the Journal of Materials Chemistry.

The polymers emit blue light when excited by ultraviolet radiation. Nitrogen-based explosive chemicals such as TNT quench that glow by soaking up electrons.

Because the polymers fluoresce brightly, no special instruments are needed to read the results. Only a very thin film sprayed on a suspect surface is needed to reveal the presence of a dangerous chemical. A single layer of the polymer, about one thousandth of a gram, is enough to detect minute amounts of some explosives, as little as a few trillionths of a gram (picograms) on a surface a half-foot in diameter. Handling explosives can leave 1,000 times that quantity or more stuck to fingers or vehicles.

The films also adhere directly to potentially contaminated surfaces, making them more sensitive than previous methods, which rely on capturing molecules that escape into the air.

Detection can be fast, revealing incriminating fingerprints as soon as the solvents dry, within 30 seconds. Exposure to ultraviolet light for an minute or two alters one of the films so that traces a nitrate esters, a class chemicals that includes the highly explosive PTEN, begin to glow green. Traces of other classes of explosives, such as nitroaromatics like TNT, stay dark.

Trogler’s group is currently developing similar systems to detect explosives based on peroxides.

Source: University of California - San Diego

Explore further: New star-shaped molecule breakthrough

add to favorites email to friend print save as pdf

Related Stories

Laser as sniffer dog for explosives

Nov 08, 2013

A new compact sensor system based on an LED pumped polymer laser detects explosive vapors quickly and sensitively. This is a promising approach for the detection of hazards, for instance in humanitarian land ...

Glass has potential to be stronger, researchers say

Sep 21, 2012

(Phys.org)—Glass is strong enough for so much: windshields, buildings and many other things that need to handle high stress without breaking. But scientists who look at the structure of glass strictly by ...

Recommended for you

New star-shaped molecule breakthrough

42 minutes ago

(Phys.org) —Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created.

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

User comments : 0