Chip-Based Device Measures Drug Resistance in Tumor Cells

May 21, 2008

Multiple drug resistance is a major cause of anticancer therapy failure. Most drug-resistance cancer cells develop this unfortunate characteristic due to a drug-pumping protein known as P-glycoprotein.

Now, a team of investigators at Simon Fraser University in Burnaby, British Columbia, has developed a microfluidic chip that can trap individual cancer cells and investigate the ability of various pump-blocking drugs to overcome drug resistance. This new “lab-on-a-chip” device could prove useful for studying multiple drug resistance and for selecting the appropriate therapy for a given patient.

Paul Li, Ph.D., and his colleagues developed the dime-size chip to select and retain individual cancer cells within a chamber that can be dosed with drugs loaded into an on-chip reservoir. An optical detection system, consisting of an inverted fluorescence microscope, enabled the researchers to measure drug influx and efflux in real time, before and after the cells were dosed with various pump inhibitors. In their current work, which appears in the journal Analytical Chemistry, the investigators studied the effects of the antipump drug verapamil on the net intake of the anticancer drug daunorubicin.

This work is detailed in the paper “Same-Single-Cell Analysis for the Study of Drug Efflux Modulation of Multidrug Resistant Cells Using a Microfluidic Chip.” Investigators from the BC Cancer Research Center in Vancouver also participated in this study. An abstract of this paper is available at the journal’s Web site.

Source: National Cancer Institute

Explore further: Water purification at the molecular level

add to favorites email to friend print save as pdf

Related Stories

How cells know which way to go

Oct 27, 2014

Amoebas aren't the only cells that crawl: Movement is crucial to development, wound healing and immune response in animals, not to mention cancer metastasis. In two new studies from Johns Hopkins, researchers ...

Tuning light to kill deep cancer tumors

Oct 15, 2014

An international group of scientists led by Gang Han, PhD, at the University of Massachusetts Medical School, has combined a new type of nanoparticle with an FDA-approved photodynamic therapy to effectively kill deep-set ...

Recommended for you

Developing the battery of the future

6 hours ago

The search for the next generation of batteries has led researchers at the Canadian Light Source synchrotron to try new methods and materials that could lead to the development of safer, cheaper, more powerful, ...

Water purification at the molecular level

16 hours ago

(Phys.org) —Fracking for oil and gas is a dirty business. The process uses millions of gallons of water laced with chemicals and sand. Most of the contaminated water is trucked to treatment plants to be ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.