Researchers identify proteins that help develop mammalian hearts

May 16, 2008

The absence of two proteins in mammalian embryos prevents the development of a healthy heart, a new study by researchers at the Medical College of Wisconsin, Milwaukee, has found.

The study, which appears in the May 15 issue of Developmental Biology, was led by Stephen Duncan, Ph.D., professor of cell biology, neurobiology and anatomy at the Medical College.

This is the first study that has successfully identified the factors responsible for the onset of heart formation in the mammalian embryo. Until now, no single mutation had been identified that was thought to be responsible for blocking proper development of the heart in mammalian embryos. The identification of these major developmental switches will allow researchers to unravel the fundamental mechanisms that define heart cell formation.

Understanding the molecular pathways that control the development of the heart has been the subject of much interest in the scientific community, as approximately 35,000 children are born in the United States each year with congenital heart defects. Many more die during gestation because of complications from improper heart development.

“Defining these molecular pathways has implications in the production of heart cells from stem cells,” said Dr. Duncan. “Our study suggests that mutations in GATA4 and GATA6 are likely contributors to the development of congenital heart disease in children. Indeed other investigators at our Medical College, as well as elsewhere, have found mutations in one of the genes from our study in children born with heart abnormalities.”

Dr. Duncan’s lab found that either of two proteins, GATA4 and GATA6, controls the expression of genes that tell early embryonic cells to start making other proteins that eventually become beating heart cells.

“When either GATA4 or GATA6 were present, the stem cells were able to make most of the proteins that are required for heart function suggesting that they act in a redundant manner,” Dr. Duncan said. “However, when both GATA4 and GATA6 genes were mutated, the embryonic stem cells were unable to form heart cells in the lab.”

The study observed how the absence or mutation of GATA4 and GATA6 proteins impacted heart development in mice embryos. The embryos were cloned from GATA4 and GATA6 deficient stem cells.

“When embryos were cloned from normal stem cells, they made normal beating hearts,” Dr. Duncan explained. “However, when embryos were cloned from the GATA4/GATA6 deficient stem cells, the embryos developed but were completely lacking all heart cells.”

Source: Medical College of Wisconsin

Explore further: Himalayan Viagra fuels caterpillar fungus gold rush

add to favorites email to friend print save as pdf

Related Stories

New insight into the regulation of stem cells and cancer cells

Aug 15, 2011

Scientists at the Gladstone Institutes have gained new insight into the delicate relationship between two proteins that, when out of balance, can prevent the normal development of stem cells in the heart and may also be important ...

Cardiac cells might help fix heart attack damage

Jun 08, 2011

(AP) -- Scientists say they've found cells in the hearts of mice that can make new muscle after a heart attack, raising hopes that doctors can one day help the human heart repair itself.

Recommended for you

Himalayan Viagra fuels caterpillar fungus gold rush

3 hours ago

Overwhelmed by speculators trying to cash-in on a prized medicinal fungus known as Himalayan Viagra, two isolated Tibetan communities have managed to do at the local level what world leaders often fail to ...

Science casts light on sex in the orchard

6 hours ago

Persimmons are among the small club of plants with separate sexes—individual trees are either male or female. Now scientists at the University of California, Davis, and Kyoto University in Japan have discovered ...

Researchers capture picture of microRNA in action

6 hours ago

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.