Plant biologists discover unexpected proteins affecting small RNAs

May 15, 2008

Now that high school biology students can recite that genes are made of DNA, which is transcribed into messenger RNA (mRNA), which is then translated into protein, along comes a new class of molecules, sending students—and many scientists—scrambling for updated textbooks.

A study by Salk Institute for Biological Studies investigator Joseph Ecker, Ph.D., reported in the May 15, 2008 online issue of Developmental Cell, shows that the RNA world is more complex than imagined. Ecker and colleagues tinkered with factors that process mRNAs in the mustard weed Arabidopsis thaliana and observed affects on short, or small RNAs. Their findings could impact fields as diverse as plant pathology and cancer research.

Although they don’t fit neatly into the DNA-to-mRNA-to-protein progression, small RNAs or microRNAs are the next big thing in both plant and animal molecular biology. Discovered a decade ago, numerous studies show that small RNAs put the brakes on the mRNA-to-protein step, by latching onto mRNA and blocking its translation into protein or causing its destruction, a phenomenon called RNA silencing.

Ecker, a professor in the Plant Biology Laboratory and director of the Salk Institute Genomic Analysis Laboratory, started by posing a simple genetic question. Researchers knew that eliminating either one of two proteins—one an mRNA-degrading enzyme called EIN5, and another a protein called ABH1 that binds to and protects mRNA from degradation—caused developmental defects in plants. Ecker’s group asked what the effects of mutating both simultaneously might be.

Aided by revolutionary “deep-sequencing” technology, which detects rare RNAs at high resolution, the investigators combed through the collection of all small RNAs—known as the “smRNAome”—and found that ein5/abh1 double mutant plants ramped up small RNA levels just enough to reveal something not seen before: the mutant plant cells were churning out small RNAs made from some of their own protein-coding mRNAs.

Investigators already knew that plants defend themselves against invading pathogens like viruses by generating short RNAs that recognize and silence foreign viral RNA. Observing that plants may silence their own RNAs in this manner was unanticipated. “Our study shows that the way plants regulate RNAs produced in viruses is also probably the way they regulate their own genes,” said Ecker. “This has not been shown before in any organism—plant or animal.”

Ecker thinks this type of mRNA silencing is not an aberration of ein5/abh1 mutant plants. “What we are seeing is in these mutants is probably a generic phenomenon that will likely hold true across all systems,” said Ecker.

And why have these types of small RNAs not been observed before" Probably because researchers have not had the tools—namely, the “right” mutants scrutinized by powerful new sequencing technology—to detect them until now.

Brian D. Gregory, Ph.D., a postdoctoral fellow in the Ecker lab and first author of the paper, feels that understanding small RNA activity—whether in a plant or animal cell setting—has implications for cancer research, a connection you might expect a plant biologist who is also recipient of the highly prestigious Damon Runyon fellowship for cancer research to make.

“What we learn about RNA silencing pathways in plants could be applied to cancer chemotherapy,” Gregory explained. “There are genes expressed in tumor cells that protect them from being killed by chemotherapy—we might be able to use small RNAs to antagonize the effect of these genes in cancer cells.”

Ecker also sees the study as particularly timely in terms of ecological change. “If you understand how plants respond normally to pathogens, you can rapidly make changes in that response,” he said. “If climate change occurs there is no doubt that insect pest populations will shift, and insects are what transmit viruses. Those insects will likely move into areas they have not seen before. Since small RNAs evolved to target invading pathogens, manipulating them may combat these effects.”

Source: Salk Institute

Explore further: Declining catch rates in Caribbean green turtle fishery may be result of overfishing

add to favorites email to friend print save as pdf

Related Stories

Gene removal could have implications beyond plant science

14 hours ago

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...

Amino acid fingerprints revealed in new study

Apr 06, 2014

Some three billion base pairs make up the human genome—the floor plan of life. In 2003, the Human Genome Project announced the successful decryption of this code, a tour de force that continues to supply ...

New functions for 'junk' DNA?

Mar 31, 2014

DNA is the molecule that encodes the genetic instructions enabling a cell to produce the thousands of proteins it typically needs. The linear sequence of the A, T, C, and G bases in what is called coding ...

Sea anemone is genetically half animal, half plant

Mar 18, 2014

The team led by evolutionary and developmental biologist Ulrich Technau at the University of Vienna discovered that sea anemones display a genomic landscape with a complexity of regulatory elements similar ...

Recommended for you

Chimpanzees prefer firm, stable beds

4 hours ago

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

5 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

6 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet May 16, 2008
CONGRATULATIONS! "Plant Biology" may save the day for floundering, failing, Cancer Research! This is the first discovery that makes SENSE!

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...