Researchers discover architecture for fundamental processes of life

May 13, 2008

A team of Canadian researchers has completed a massive survey of the network of protein complexes that orchestrate the fundamental processes of life. In the online edition of the journal Science, researchers from the Université de Montréal describe protein complexes and networks of complexes never before observed – including two implicated in the normal mechanisms by which cells divide and proliferate and another that controls recycling of the molecular building blocks of life called autophagy.

These processes are implicated in diseases such as cancers and autophagy has recently been shown to be involved in degenerative neurological disorders such as Alzheimer's and Huntington's diseases. The discovery will fill gaps in basic knowledge about the workings and evolutionary origins of the living cell and provide new avenues to explore in linking these fundamental processes to human disease.

The study was led by Stephen Michnick, a Université de Montréal biochemistry professor and Canada Research Chair in Integrative Genomics, along with Université de Montréal co-first authors: Kirill Tarassov, Vincent Messier, Christian Landry and Stevo Radinovic. Collaborators from McGill’s Department of Biology included Canadian genomics pioneer Prof. Howard Bussey and Prof. Jackie Vogel.

“Our team systematically analyzed the interactions of proteins of bakers yeast, a unicellular organism confirmed to provide insight into fundamental processes shared by most living cells including those of humans,” explained Prof. Michnick.

New technology makes discovery possible

The examination of protein complexes was made possible by a unique technology developed by Prof. Michnick with his post-doctoral fellows and graduate students. The novel technology allows interactions between proteins to be studied in their nearly natural state in the cell. With this technology, the scientists performed approximately 15 million pair-wise tests to identify about 3,000 interactions between protein pairs.

Since protein-to-protein association largely defines their function, this is a major advancement towards scientific understanding of the inner life of human cells. Thanks to Prof. Michnick’s technology, the researchers also uncovered the architecture of protein complexes – key information necessary to determine how proteins work together to orchestrate complex biochemical processes.

“The technologies and resources developed for this study can be applied to investigate protein networks in more complex organisms including crop plant and human cells,” said Prof. Michnick. “They may also be used to link multiple genes implicated in complex human diseases to common cellular processes. What’s more, applications to diagnostic tests and the development of drugs and antibodies against human cancers can be readily envisioned.”

Source: University of Montreal

Explore further: Living in the genetic comfort zone

add to favorites email to friend print save as pdf

Related Stories

Combination of imaging methods improves diagnostics

Feb 19, 2015

Scientists from the Helmholtz Zentrum München and the Technische Universität München have succeeded in a breakthrough for the further development of contrast agents and consequently improved diagnostics with imaging using ...

Researchers find unusually elastic protein

Jan 26, 2015

Scientists at Heidelberg University have discovered an unusually elastic protein in one of the most ancient groups of animals, the over 600-million-year-old cnidarians. The protein is a part of the "weapons system" that the ...

Recommended for you

Salish Sea seagull populations halved since 1980s

39 minutes ago

The number of seagulls in the Strait of Georgia is down by 50 per cent from the 1980s and University of British Columbia researchers say the decline reflects changes in the availability of food.

Cultivation of microalgae via an innovative technology

49 minutes ago

Preliminary laboratory scale studies have shown consistent biomass production and weekly a thick microalgal biofilm could be harvested. A new and innovative harvesting device has been developed for ALGADISK able to directly ...

100,000 bird samples online

1 hour ago

The Natural History Museum (NHM) in Oslo has a bird collection of international size. It is now available online.

Banksias differ on resilience to climate change

1 hour ago

Research into the germination requirements of four Banksia species (Proteaceae) endemic to the South West Australian Floristic Region (SWAFR) has found certain species may be more vulnerable to climate change ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.