Researchers Tackling Unsolved Questions About Protein Structures

May 07, 2008
Researchers Tackling Unsolved Questions About Protein Structures
Two protein structures.

A University of Arizona research team is exploring the evolutionary origins of protein structures. Their findings will help people better understand how proteins evolved to carry out the instructions encoded in the genes of every living thing.

Protein molecules are made up of chains of amino acids. These chains bend and fold into a dizzying array of three-dimensional shapes and structures, depending on the order of the amino acids in a given chain. Those varied structures are part of what allow the proteins – which are assembled based on instructions coded in DNA – to regulate everything from an organism's growth and metabolism to the ways messages are transmitted from cell to cell. Protein structures are at the heart of how organisms function.

However, the evolution of those structures is still poorly understood, because there are few observed examples of proteins that have clearly evolved from one shape to another.

"The origin of the diversity of protein structures is a major unsolved problem," explains Matthew H.J. Cordes, a member of the UA's BIO5 Institute and an associate professor of biochemistry and molecular biophysics.

Cordes' lab is solving that problem. Two graduate students in his lab, Christian M. Roessler and Branwen M. Hall, have located protein molecules in two different viruses that have dramatically different structures: One protein has a helical, or corkscrew, shape, while the other is shaped more like a hairpin. Yet these very different proteins have similar amino acid sequences and perform similar functions – binding to DNA to help the viruses replicate and spread – making it likely that they had a common ancestor.

"Somehow, mutations converted the corkscrew structure to the hairpin structure," Cordes says of the finding, which was recently reported in the Proceedings of the National Academy of Sciences.

While this isn't the first example of structural differences among proteins with a common ancestor, it may be the most dramatic natural example of related proteins retaining clear similarity in amino acid sequence while undergoing major reorganization of their structure.

"This finding strongly confirms that evolutionary processes produce new protein shapes," Cordes says. "It could become a textbook example of the reality and beauty of evolutionary changes in structure." He adds that some proteins in this family with the hairpin shape bind to DNA more strongly than those with the corkscrew shape, though it is too early to tell if this is always the case. It's not yet known whether such an advantage helped drive the hairpin structure's evolution.

Cordes' graduate students found their protein pair via an unusual method: Roessler and Hall used a stepping-stone technique to make a series of small "jumps" among closely related proteins, following minute structural changes from one protein to another until they "landed" at a protein that was dramatically different from the one they'd started with, yet was still related to it.

Cordes' lab is now working out the details of the specific mutations that might have caused their two proteins to diverge from one another. They also plan to use their stepping-stone technique to shed light on the evolutionary links among other proteins.

"This is like space exploration," Cordes says. "We're journeying through the protein universe, step by step."

Source: University of Arizona

Explore further: Bulletproof nuclei? Stem cells exhibit unusual absorption property

add to favorites email to friend print save as pdf

Related Stories

Researchers develop new model of cellular movement

13 hours ago

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

Recommended for you

Plants with dormant seeds give rise to more species

Apr 18, 2014

Seeds that sprout as soon as they're planted may be good news for a garden. But wild plants need to be more careful. In the wild, a plant whose seeds sprouted at the first warm spell or rainy day would risk disaster. More ...

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet May 07, 2008
You are about to solve the mystery of LIFE! Proceed with respect and caution!

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Growing app industry has developers racing to keep up

Smartphone application developers say they are challenged by the glut of apps as well as the need to update their software to keep up with evolving phone technology, making creative pricing strategies essential to finding ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.