Researchers study bacterium big enough to see -- the Shaquille O'Neal of bacteria

May 07, 2008
Researcher searches DNA for secrets to bacteria's large size
A close-up of the tip of an Epulopiscium with the tip of a protozoan (Paramecium) and the black spots are E. coli cells. The researcher mixed E. coli and Paramecium cells in with Epulopiscium she had picked out of fish gut contents to show the relative sizes.

Well, perhaps not quite Shaquille O'Neal. But it is Shaq-teria. The secret to an unusual bacterium's massive size -- it's the size of a grain of salt, or a million times bigger than E. coli bacteria, and big enough to see with the naked eye -- may be found in its ability to copy its genome tens of thousands of times.

That's according to Cornell research published in a recent issue of the journal Proceedings of the National Academy of Sciences.

This giant among bacteria, Epulopiscium sp., lives in a symbiotic relationship in the gut of surgeonfish around Australia's Great Barrier Reef. The research shows how a simple modification in the basic design of bacterial cells allows Epulopiscium sp. to grow so large.

"Other bacteria have multiple copies of their genome, but prior to this, I think the highest numbers known have been a hundred or a few hundred copies," said Esther Angert, a Cornell associate professor of microbiology and the paper's senior author. "The big discovery is seeing this bacterium with tens of thousands of copies of its genome."

Most bacteria are small and appear to be structurally simple. They lack the specialized organelles that allow eukaryotic cells (cells in which DNA is contained within a nucleus) to take in nutrients, organize cellular functions and maintain larger sizes. Bacteria instead rely on diffusion through their cell membranes to obtain nutrients and other important chemicals. Since bacteria cannot move nutrients within the cell body, they need to stay small for diffusion to work well.

But, by copying its genome thousands of times and arraying it in a kind of fabric just under the cell membrane, Epulopiscium sp. may maintain its large size by keeping its DNA close to the outer surface, Angert said. That way, the DNA may respond quickly and locally to stimuli by producing RNA and proteins where they are needed.

"Having copies of its genome arrayed around the periphery keeps the DNA close to the outer environment," said Angert. "The bacterium can immediately react as something comes in contact with the cell."

The bacterium's large size offers advantages: It is highly mobile and too big to eat for most protozoan predators that also live in the surgeonfish's gut.

Also, while most bacteria reproduce by dividing into two equal-sized offspring, Epulopiscium sp. produces offspring internally, usually two, one at each pole of the cigar-shaped cell. These polar cells grow within the mother cell's cytoplasm, until the mother cell eventually bursts open and dies.

"We're interested in how that process arose and how that may affect the biology of the organism," said Angert.

Source: Cornell University

Explore further: Dwindling wind may tip predator-prey balance

add to favorites email to friend print save as pdf

Related Stories

Protein secrets of Ebola virus

9 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

'Immortal' flatworms may be a weapon against bacteria

Sep 11, 2014

A novel mode of defense against bacteria such as the causal agent of tuberculosis or Staphylococcus aureus has been identified in humans by studying a small, aquatic flatworm, the planarian. This discovery ...

Microbes evolve faster than ocean can disperse them

Sep 11, 2014

Two Northeastern University researchers and their international colleagues have created an advanced model aimed at exploring the role of neutral evolution in the biogeographic distribution of ocean microbes.

Microalgae – the factories of the future

Sep 09, 2014

Biology professor Ralf Kaldenhoff is making microalgae fit for industry. The microorganisms could produce a variety of products from carbon dioxide and light.

Recommended for you

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

AJW
not rated yet May 08, 2008
Colony without cell walls?
burvis
not rated yet May 08, 2008
I believe Thiomargarita namibiensis is just as big, if not bigger.