Strong Quake Could Trigger A Tsunami in Southern California

Sep 23, 2004
Strong Quake Could Trigger A Tsunami in Southern California

With a strong enough jolt — a 7.6 -magnitude earthquake - the seafloor under Catalina Island could be violently thrust upward, causing a tsunami along the Southern California coast, according to researchers at the University of Southern California.

In a pair of journal articles published this month, researchers at the Viterbi School of Engineering described the tsunami hazard associated with offshore faults, including one that lies under Santa Catalina Island, just 25 miles off the Los Angeles coast.

Image: Map of offshore Southern California, showing areas (red) where restraining bends have created uplift on the sea floor. During an earthquake, these bends can push the seafloor up and generate a tsunami.

“Catalina Island itself exists due to earthquake-related uplift on a geologic structure known as a restraining bend,” said Mark Legg, a geophysicist working with the USC researchers, in the August issue of Earthquake Spectra. “Although most faults offshore Los Angeles and Orange counties are mostly strike-slip — faults that move side to side — bends in the fault line produce areas where the ground is pushed up during major earthquakes. One of these regions lies directly below Santa Catalina Island.”

Strike slip faults are not straight," added Jose C. Borrero, assistant research professor in the USC Viterbi School, who worked with co-researcher Costas E. Synloakis, USC professor of civil and environmental engineering, on the study. "Bends in the fault trace produce regions where earthquake stresses cause the sea floor to pop up and generate a tsunami.

When a large earthquake occurs at a restraining bend, like the bend under Catalina Island, the ground is pushed up and, in turn, pushes up the entire region that has created the island and its offshore flanks.

“Future earthquakes will push the region up further, possibly resulting in a tsunami,” Legg warned.

“Tsunami” is a Japanese word for waves caused by large motions of the sea floor, either through earthquakes, landslides or undersea volcanoes. They are generally associated with earthquakes that occur offshore and produce significant uplifting of the sea floor.

Legg, who was awarded a fellowship through the National Earthquake Hazards Reduction Program to conduct research at the USC Viterbi School of Engineering, combined his earthquake modeling with computer simulation techniques developed at the university.

“We took a range of potential earthquakes and investigated the tsunami potential from each case,” Borrero explained. “We found there is significant amplification of tsunami energy into San Pedro Bay.”

The findings have important implications because San Pedro Bay’s south-facing shores are home to the largest container ports in the United States — the ports of Los Angeles and Long Beach. Billions of dollars of materials pass through these ports every day. A large earthquake and tsunami could bring commerce to a halt, seriously impacting not only California’s economy but the nation’s economy.

“A magnitude 7.6 earthquake could cause seafloor uplift of six feet or more,” Borrero said. “That, in turn, would disturb the sea surface by the same amount, resulting in a tsunami. The shallow San Pedro shelf offshore of Long Beach focuses the waves and amplifies them by one-and-a -half times, so the original six-foot wave would build to nine feet inside the harbor.”

The researchers said waves of that size could smash small boats at their moorings, possibly flood low-lying areas in the ports and push huge oil tankers and cargo ships against piers, which may not withstand the force. The destruction could create oil spills and become a serious fire hazard.

In a related article published in the July 10 issue of Geophysical Research Letters, the researchers compared the worst-case scenario for tsunamis generated on three offshore faults and one submarine landslide.

In addition to the largest of the Catalina fault scenarios, they looked at potential earthquakes on the Lasuen Knoll and San Mateo Thrust faults, which lie offshore of Orange and northern San Diego counties, as well as a large submarine landslide offshore of the Palos Verdes Peninsula.

“The results are similar, but show that the ports of Los Angeles and Long Beach are particularly vulnerable to locally generated tsunamis,” Borrero said.

However, the analysis offered some good news: the same features that focus and amplify tsunami waves also slow the waves’ arrival.

“Our models show that depending on the source, there is anywhere from 15 to 20 minutes between the earthquake and the first significant waves in the ports,” Borrero said. “This may give shippers enough time to evacuate dock workers and stop hazardous activities, such as cargo handling or offloading oil from tanker ships. Every second would count.”

Source: University of Southern California

Explore further: First potentially habitable Earth-sized planet confirmed: It may have liquid water

add to favorites email to friend print save as pdf

Related Stories

Floating nuclear plants could ride out tsunamis

Apr 16, 2014

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Experts: Chile's M8.2 quake not 'the big one'

Apr 02, 2014

Authorities in northern Chile discovered surprisingly light damage and just six reported deaths Wednesday from a magnitude-8.2 quake—a remarkably low toll for such a powerful shift in the Earth's crust.

Depth, distance reduce impact of California quake

Mar 10, 2014

One of the largest earthquakes to hit California in decades rattled the state's northern coast, but its depth and distance from shore reduced the impact on land, where there were no reports of injuries or damage, scientists ...

Calculating tsunami risk for the US East Coast

Apr 19, 2013

The greatest threat of a tsunami for the U.S. east coast from a nearby offshore earthquake stretches from the coast of New England to New Jersey, according to John Ebel of Boston College, who presented his findings today ...

Japan tsunami exacerbated by landslide

Dec 18, 2013

The 2011 Japan tsunami, which killed up to 20,000 people and caused the partial meltdown of the Fukushima nuclear plant, was made worse by an underwater landslide, according to scientists.

Recommended for you

Continents may be a key feature of Super-Earths

1 hour ago

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Ceres and Vesta Converge in Virgo

2 hours ago

Don't let them pass you by. Right now and continuing through July, the biggest and brightest asteroids will be running on nearly parallel tracks in the constellation Virgo and so close together they'll easily ...

A full-spectrum Mars simulation in a box

3 hours ago

There are many reasons why Mars excels at destroying expensive equipment. For one thing, its entire surface is made of partially-magnetized dust. For another, Mars possesses just enough atmosphere so that ...

User comments : 0

More news stories

Continents may be a key feature of Super-Earths

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Under some LED bulbs whites aren't 'whiter than white'

For years, companies have been adding whiteners to laundry detergent, paints, plastics, paper and fabrics to make whites look "whiter than white," but now, with a switch away from incandescent and fluorescent lighting, different ...