Menstrual blood -- a valuable source of multipotential stem cells?

Apr 23, 2008

Researchers seeking new and more abundant sources of stem cells for use in regenerative medicine have identified a potentially unlimited, noncontroversial, easily collectable, and inexpensive source – menstrual blood.

Stromal stem cells - cells that are present in connective tissues - have recently been identified in endometrial tissues of the uterus. When the fresh growth of tissue and blood vessels is shed during each menstrual cycle, some cells with regenerative capabilities are present and collectable. While collecting menstrual blood stromal cells (MenSCs) directly from tissue would be invasive, retrieving them during the menstrual cycle would not be.

“Stromal stem cells derived from menstrual blood exhibit stem cell properties, such as the capacity for self-renewal and multipotency,” said Amit N. Patel, MD, MS, Director of Cardiac Cell Therapy at the University of Pittsburgh’s McGowan Institute of Regenerative Medicine. “Uterine stromal cells have similar multipotent markers found in bone marrow stem cells and originate in part from bone marrow.”

Published in the most recent issue of Cell Transplantation (Volume 17, issue 3), the study examined to what degree MenSCs demonstrated an ability to differentiate into a variety of cell lineages.

Tests showed that MenSCs could differentiate into adipogenic, chondrogenic, osteogenic, ectodermal, mesodermal, cardiogenic, and neural cell lineages. According to Patel, the sample MenSCs expanded rapidly and maintained greater than 50 percent of their telomerase activity when compared to human embryonic stem cells and better than bone marrow-derived stem cells. “Studies have demonstrated that MenSCs are easily expandable to clinical relevance and express multipotent markers at both the molecular and cellular level,” concluded Patel.

Researchers emphasized the importance of the abundance and plasticity of MenSCs. Based on the results of their studies, they noted the potential for MenSCs in regenerative transplantation therapies for many different organs and tissues. “The need for regenerative therapies using cells with the ability to engraft and differentiate is vast,” said Patel.

“The ideal cell would also have the ability to be used in an allogenic manner from donors for optimal immunogenic compatibility. Due to their ease of collection and isolation, MenSCs would be a great source of multipotent cells if they exhibit this property along with their ability to differentiate,” concluded Julie G. Allickson, Ph.D., Vice President of Laboratory Operations and Research & Development, Cryo-Cell International, Inc., the study-partner company that identified, extracted, and initially analyzed the cells. “The preliminary results are extremely encouraging and support the importance of further study of these cells in several different areas including heart disease, diabetes and neurodegenerative disease.”

Dwaine Emerich, Ph.D., a section editor for Cell Transplantation, believes that “These studies are a significant step forward in the development of transplantable stem cells for human diseases because they address major issues including routine and safe cell harvesting of renewable cells that maintain their differentiation capacity and can be scaled for widespread clinical use.”

Source: Cell Transplantation Center of Excellence for Aging and Brain Repair

Explore further: Research helps identify memory molecules

add to favorites email to friend print save as pdf

Related Stories

Central biobank for drug research

23 hours ago

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

New tool aids stem cell engineering for medical research

Aug 28, 2014

A Mayo Clinic researcher and his collaborators have developed an online analytic tool that will speed up and enhance the process of re-engineering cells for biomedical investigation. CellNet is a free-use Internet platform ...

How the zebrafish gets its stripes

Aug 28, 2014

The zebrafish, a small fresh water fish, owes its name to a striking pattern of blue stripes alternating with golden stripes. Three major pigment cell types, black cells, reflective silvery cells, and yellow ...

Recommended for you

Research helps identify memory molecules

25 minutes ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Sorghum and biodiversity

36 minutes ago

It is difficult to distinguish the human impact on the effects of natural factors on the evolution of crop plants. A Franco-Kenyan research team has managed to do just that for sorghum, one of the main cereals ...

Robotics to combat slimy pest

39 minutes ago

One hundred years after they arrived in a sack of grain, white Italian snails are the target of beleaguered South Australian farmers who have joined forces with University of Sydney robotics experts to eradicate ...

Migratory fish scale to new heights

1 hour ago

WA scientists are the first to observe and document juvenile trout minnow (Galaxias truttaceus Valenciennes 1846) successfully negotiating a vertical weir wall by modifying their swimming technique to 'climb' ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

nano999
not rated yet Apr 23, 2008
Should we begin to freeze and store used tampons now?
Mercury_01
4 / 5 (1) Apr 23, 2008
You know, the tribes of the outback have kept this blood handy for thousands of years as a miraculous healing salve. they would put it in a conical basket or horn with some grass straw and let it ferment untill it oozed out the bottom of the grass filter. then they would put it on open wounds. Not kidding.
zevkirsh
not rated yet Apr 23, 2008
see....it's not only nutrious and delicious, but also can save lives. three cheers for menses