Pathogen virulence proteins suppress plant immunity

Apr 21, 2008

Researchers from the Virginia Bioinformatics Institute (VBI) at Virginia Tech and their colleagues have identified a key function of a large family of virulence proteins that play an important role in the production of infectious disease by the plant pathogen Phytophthora sojae.

VBI Professor Brett Tyler and members of his research group, along with researchers from Virginia Tech’s Department of Plant Pathology, Physiology and Weed Science, Nanjing Agricultural University in China, and Wageningen University in The Netherlands, examined the function of the virulence (or effector) protein Avr1b in P. sojae and discovered that Avr1b is capable of suppressing an important process in plant immunity called programmed cell death. Programmed cell death is an in-built suicide mechanism that kills infected plant tissue and fills it with toxins so the pathogen can no longer feed on it. The work appears in the advance online edition of The Plant Cell.

P. sojae is an oomycete plant pathogen that causes severe damage to soybean crops, resulting in $1-2 million in annual losses for commercial farmers in the United States and much more worldwide. By changing key amino acid residues in the effector protein, the researchers were able to attribute the cause of the suppression of programmed cell death to the presence of two conserved sequences (dubbed W and Y motifs) at one particular end of the protein, the C-terminus. These amino acid sequences are also present in many other members of a huge virulence gene superfamily that Tyler’s group found recently in oomycete pathogens. (2)

According to VBI Professor Brett Tyler, “Our results suggest that, like many human viruses such as HIV, oomycete plant pathogens disable the immune systems of their victims as part of their infection strategy.”

Source: Virginia Tech

Explore further: Lemurs match scent of a friend to sound of her voice

add to favorites email to friend print save as pdf

Related Stories

Study unravels origin of devastating kiwifruit bacterium

May 09, 2012

An international research team led by Virginia Tech Associate Professor Boris Vinatzer and Giorgio Balestra of the University of Tuscia in Italy has used the latest DNA sequencing technology to trace a devastating ...

Recommended for you

Lemurs match scent of a friend to sound of her voice

9 hours ago

Humans aren't alone in their ability to match a voice to a face—animals such as dogs, horses, crows and monkeys are able to recognize familiar individuals this way too, a growing body of research shows.

Chrono, the last piece of the circadian clock puzzle?

11 hours ago

All organisms, from mammals to fungi, have daily cycles controlled by a tightly regulated internal clock, called the circadian clock. The whole-body circadian clock, influenced by the exposure to light, dictates the wake-sleep ...

User comments : 0

More news stories

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.