Regulating hematopoietic stem cell homeostasis and leukemogenesis

Apr 15, 2008

In the April 15th issue of G&D, Dr. Richard Flavell (Yale University) and colleagues identify the c-Cbl protein as a critical repressor of hematopoietic stem cell (HSC) self-renewal. In addition to establishing a key role for protein ubiquitylation in HSC development, this finding posits c-Cbl as a potential target in research into stem cell engineering as well as cell-based leukemia treatments.

Dr. Flavell describes the work as elucidating “a novel dimension in our understanding the self-renewal of Hematopoietic stem cells."

Like all stem cell populations, HSC reply upon asymmetric cell division to generate two different daughter cells: one future stem cell, and another cell that will further differentiate into a more specialized cell type. Thus, a balance is struck between the production of new cell types and the renewal of the stem cell pool. However, imbalances between HSC self-renewal and differentiation can lead to hematologic malignancies like leukemia.

Dr. Flavell’s group discovered that the E3 ubiquitin ligase, c-Cbl, suppresses HSC self-renewal. The researchers generated transgenic mice deficient in c-Cbl, and demonstrated that these c-Cbl-mutant mice display an increased number of HSCs.

Lead author, Dr. Chozhavendan Rathinam, is confident that "our findings may facilitate the expansion and manipulation of hematopoietic stem cells for tissue engineering and stem cell based therapies."

Source: Cold Spring Harbor Laboratory

Explore further: Shaking up cell biology: Researchers focus in on decades-old mitochondrial mystery

add to favorites email to friend print save as pdf

Related Stories

Regulating hematopoietic differentiation

Oct 05, 2012

Blood cells originate from a small pool of hematopoietic stem cells (HSCs) through a complex process of differentiation steps that are tightly regulated at the transcriptional level. Dissecting the mechanisms ...

Researchers parse the origins of hematopoietic stem cells

Jun 08, 2011

Researchers at the University of California, San Diego School of Medicine have identified a gene and a novel signaling pathway, both critical for making the first hematopoietic stem cells (HSCs) in developing ...

Recommended for you

Scientists see how plants optimize their repair

16 hours ago

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

User comments : 0