What Genesis Solar Particles Can Tell Us

Sep 22, 2004
This artist's conception shows the Genesis spacecraft in collection mode, opened up to collect and store samples of solar wind p

The recent crash of NASA's Genesis space probe may have looked like bad news for scientists, but its cargo of particles captured from the sun should still yield useful information, according to Qing-Zhu Yin, a planetary scientist at UC Davis.

Yin, who is not directly affiliated with the Genesis mission, studies the composition of meteorites to learn about the formation of the solar system. Like the Genesis capsule, meteorites have a hard landing on the Earth, but can still yield useful information, he said.

By looking at the ratio of oxygen-16, -17 and -18 isotopes in the solar particles, scientists should be able to test theories about how the sun and planets formed. Oxygen-16 is by far the most common. The Earth, moon, Mars and some meteorites all have slightly different ratios of the three isotopes.

The oxygen makeup of the sun, which contains about 99.9 percent of all the mass in the solar system, is much harder to measure. The Genesis spacecraft was built to answer that question by collecting particles blown out from the sun.

In a "Perspectives" article in the Sept. 17 issue of the journal Science, Yin describes new theories about local variations in oxygen isotopes in the vast dust and gas cloud around the young sun. Free oxygen was released when ultraviolet light hit carbon monoxide gas. Because oxygen-16 was so abundant, it was released mostly near the surface of the cloud, but breakdown of carbon monoxide containing less abundant oxygen-17 or -18 continued deeper into the cloud.

Free oxygen and hydrogen formed water that froze onto dust grains and eventually formed into planets, preserving the oxygen-17 and -18 signature, Yin said. The models predict that the Sun itself should have a much lower ratio of oxygen-17 and -18 to oxygen-16 than the rocky planets, a prediction that can be tested by Genesis and future missions.

Source: UC Devis

Explore further: NASA's Webb Telescope mirror tripod in action (Video)

add to favorites email to friend print save as pdf

Related Stories

Searching for the solar system's chemical recipe

Feb 20, 2013

(Phys.org)—By studying the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets, asteroids, and interplanetary ice and dust, Mark Thiemens and ...

The nuclear reactor in your basement

Feb 19, 2013

How would you like to replace your water heater with a nuclear reactor? That's what Joseph Zawodny, a senior scientist at NASA's Langley Research Center, hopes to help bring about. It would tap the enormous ...

A serious search for extraterrestrial life

May 26, 2009

Things have changed since the original Captain Kirk and Mr. Spock set off to seek out new life and new civilizations. Back in the 1960s, while the Enterprise crew was exploring a galaxy full of exotic life-forms, real astronomers ...

Recommended for you

NASA's Webb Telescope mirror tripod in action (Video)

11 hours ago

Setting up NASA's James Webb Space Telescope's secondary mirror in space will require special arms that resemble a tripod. NASA recently demonstrated that test in a NASA cleanroom and it was documented in ...

Iridium flares captured in real time by astrophotographer

19 hours ago

There are so many fun sights to see in the sky that are pure astronomical magic. And then there are the spectacular human-created sights. One of those sights is watching satellites from the Iridium constellation ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.