Scientists identify a mechanism that helps fruit flies lock-in memories

Mar 29, 2008

Synapses are the tiny gaps across which information crosses between nerve cells. Changes in the strength of synaptic connections, called plasticity, play a vital role in both memory formation and learning, and help determine how nerve signals propagate.

Assistant professor Josh Dubnau, Ph.D., leads a CSHL neuroscience lab that studies learning and memory in fruit flies, or Drosophila. His team had previously identified a group of fly genes needed for memory formation, including one called Pumilio. A similar gene is present in humans, so studying Pumilio in the fly brain could help researchers understand how memory works in the human brain.

A Fruitful Hypothesis

Prior work had shown that Pumilio acts with other genes to shape the developing fly embryo, by modifying how much of various proteins is made in different regions of a cell. Dr. Dubnau hypothesized that the gene acts similarly to affect memory formation.

To further explore this idea, Dr. Dubnau collaborated with CSHL Professors Michael Zhang, Ph.D., a computational biologist, and Adrian Krainer, Ph.D., an expert on gene expression. He posed a question to Dr. Zhang that called for sophisticated mathematical analysis: For 151 genes known to be active in synapses, which of the protein-precursors they produce were most likely to interact with Pum, the protein made by Pumilio? Back in the laboratory, Dr. Krainer’s team confirmed that Pum interacts with several of the protein-precursors identified by Dr. Zhang’s team, including one arising from a gene called dlg1. A gene very similar to dlg1 acts in synapse formation in mammals.

Testing the Result in Living Flies

What about the fly? Dr. Dubnau’s lab performed the final step. They genetically engineered flies that made especially large amounts of Pum protein in a brain region called the mushroom body where memory storage occurs. They then confirmed that, in such flies, the protein product of the dlg1 gene was dramatically reduced in this brain region. This observation supports the notion that Pumilio helps build memories by selectively altering individual synapses.

The current work is particularly satisfying, Dr. Dubnau noted, because the original hypothesis about Pumilio was extended by computations to make further predictions, which were then brought full circle and tested in vitro, in the lab and in vivo, in living flies. "It's the kind of interdisciplinary collaboration that Cold Spring Harbor is very good at," he observed.

“Identification of Synaptic Targets of Drosophila Pumilio” appears in PLoS Computational Biology on February 29, 2008.

Source: Cold Spring Harbor Laboratory

Explore further: Cheetahs found to use spatial avoidance techniques to allow for surviving among lions

add to favorites email to friend print save as pdf

Related Stories

First-of-its-kind NASA space-weather project

7 hours ago

A NASA scientist is launching a one-to-two-year pilot project this summer that takes advantage of U.S. high-voltage power transmission lines to measure a phenomenon that has caused widespread power outages ...

US urged to drop India WTO case on solar

7 hours ago

Environmentalists Wednesday urged the United States to drop plans to haul India to the WTO to open its solar market, saying the action would hurt the fight against climate change.

Recommended for you

Invasive vines swallow up New York's natural areas

3 hours ago

(Phys.org) —When Antonio DiTommaso, a Cornell weed ecologist, first spotted pale swallow-wort in 2001, he was puzzled by it. Soon he noticed many Cornell old-field edges were overrun with the weedy vines. ...

Citizen scientists match research tool when counting sharks

17 hours ago

Shark data collected by citizen scientists may be as reliable as data collected using automated tools, according to results published April 23, 2014, in the open access journal PLOS ONE by Gabriel Vianna from The University of Wes ...

User comments : 0

More news stories

Breast cancer replicates brain development process

New research led by a scientist at the University of York reveals that a process that forms a key element in the development of the nervous system may also play a pivotal role in the spread of breast cancer.