Researchers Demonstrate Molecular Delivery System for Molecular Communication

Mar 27, 2008

NTT DoCoMo, Inc. announced today that in experiments being carried out jointly with Professor Kazuo Sutoh of the Department of Life Sciences, The University of Tokyo, and Associate Professor Shoji Takeuchi of the Institute of Industrial Science, The University of Tokyo, it has successfully demonstrated the world's first molecular delivery system for molecular communication.

DoCoMo has been pioneering research into the field of molecular communication, a new communication paradigm in which molecules are used as a communication medium. By combining communication technology and biochemistry, DoCoMo aims to develop systems that could transmit information about the biochemical conditions of living organisms, such as excitement, emotion, stress or disease.

The experiment has confirmed the feasibility of a proposed delivery system to transport specific molecules using artificially synthesized DNAs and chemically energized motor proteins, typically found in muscles and nerve cells, which are capable of moving autonomously by converting chemical energy into mechanical work.

The system, which functions on its own because it does not require external power supply or control, could help lead to the realization of a biochemical analyzer, or biochip, a fingertip-sized microchip for biological and chemical analysis.

The envisioned molecular delivery system could have many applications in medicine and healthcare. For instance, it may be possible to diagnose diseases or stress by directly analyzing biomolecules in a drop of sweat or blood using a mobile phone equipped with a biochip. The molecular delivery system would be packaged in the biochip, and the data generated in the biochemical analysis would be transmitted to a medical specialist via a mobile phone using traditional wireless technology. The system could be used, for example, for remote health checks or preventive medicine.

A mobile phone with a biochip could also have applications in the fields of environment (e.g., water analysis) and entertainment (e.g., fortune telling).

DoCoMo and The University of Tokyo are continuing their collaborative research into practical uses of molecular communication to identify applicable molecules and to develop an actual molecular delivery system for installation in a biochip.

Source: NTT DoCoMo

Explore further: Top Japan lab dismisses ground-breaking stem cell study

add to favorites email to friend print save as pdf

Related Stories

Technology to help farmers protect crops

Nov 25, 2014

New technology to tackle biosecurity challenges down the track is one of the five megatrends identified in today's CSIRO report Australia's Biosecurity Future: preparing for future biological challenges. ...

Entering the Nano Era

Nov 05, 2014

Modern hard drives only require an area of a few square nanometers for each bit of information. To protect ourselves from sunburn we use sunscreens that contain nanoparticles of titanium dioxide or zinc oxide. Is this the ...

Mice study enables view of nanoparticle accumulation

May 14, 2014

(Phys.org) —A number of years ago, a paper was published in Environmental Health Perspectives by Maureen Gwinn and Val Vallyathan that reflected concern about nanoparticles. Health experts ask: What are ...

Recommended for you

Scientists target mess from Christmas tree needles

1 hour ago

The presents are unwrapped. The children's shrieks of delight are just a memory. Now it's time for another Yuletide tradition: cleaning up the needles that are falling off your Christmas tree.

Top Japan lab dismisses ground-breaking stem cell study

9 hours ago

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.