Artificial photosynthesis moves a step closer

Mar 25, 2008

Jülich scientists have made an important step on the long road to artificially mimicking photosynthesis. They were able to synthesise a stable inorganic metal oxide cluster, which enables the fast and effective oxidation of water to oxygen.

This is reported by the German high-impact journal Angewandte Chemie in a publication rated as a VIP ("very important paper"). Artificial photosynthesis may decisively contribute to solving energy and climate problems, if researchers find a way to efficiently produce hydrogen with the aid of solar energy.

Hydrogen is regarded as the energy carrier of the future. The automobile industry, for example, is working hard to introduce fuel cell technology starting in approximately 2010. However, a fuel cell drive system can only be really environmentally friendly, if researchers succeed in producing hydrogen from renewable sources. Artificial photosynthesis, i.e. the splitting of water into oxygen and hydrogen with the aid of sunlight, could be an elegant way of solving this problem.

However, the road to success is littered with obstacles. One of the obstacles to be overcome is the formation of aggressive substances in the process of water oxidation. Plants solve this problem by constantly repairing and replacing their green catalysts. A technical imitation depends on more stable catalysts as developed and synthesised for the first time by a team from Research Centre Jülich, member of the Helmholtz Association, and from Emory University in Atlanta, USA. The new inorganic metal oxide cluster with a core consisting of four ions of the rare transition metal ruthenium catalyses the fast and effective oxidation of water to oxygen while remaining stable itself.

"Our water-soluble tetraruthenium complex displays its effects in aqueous solution already at ambient temperature," enthuses Prof. Paul Kögerler from the Jülich Institute of Solid State Research, who synthesised and characterised the promising cluster together with his colleague Dr. Bogdan Botar. Catalytic measurements were carried out at Emory University. "In contrast to all other molecular catalysts for water oxidation, our catalyst does not contain any organic components. This is why it is so stable".

Botar explains the next step: "Now the challenge is to integrate this ruthenium complex into photoactive systems, which efficiently convert solar energy into chemical energy". So far, energy is still obtained from a chemical oxidant.

Citation: Yurii V. Geletii, Bogdan Botar, Paul Kögerler, Daniel A. Hillesheim, Djamaladdin G. Musaev, and Craig L. Hill; An All-Inorganic, Stable, and Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation; Angewandte Chemie, DOI: 10.1002/ange.200705652.

Source: Research Centre Jülich

Explore further: Towards controlled dislocations

add to favorites email to friend print save as pdf

Related Stories

Surface properties command attention

6 hours ago

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

Rock-dwelling microbes remove methane from deep sea

Oct 15, 2014

Methane-breathing microbes that inhabit rocky mounds on the seafloor could be preventing large volumes of the potent greenhouse gas from entering the oceans and reaching the atmosphere, according to a new ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

Recommended for you

Towards controlled dislocations

9 hours ago

Crystallographic defects or irregularities (known as dislocations) are often found within crystalline materials. Two main types of dislocation exist: edge and screw type. However, dislocations found in real ...

Chemists tackle battery overcharge problem

Oct 17, 2014

Research from the University of Kentucky Department of Chemistry will help batteries resist overcharging, improving the safety of electronics from cell phones to airplanes.

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

User comments : 0