Artificial photosynthesis moves a step closer

Mar 25, 2008

Jülich scientists have made an important step on the long road to artificially mimicking photosynthesis. They were able to synthesise a stable inorganic metal oxide cluster, which enables the fast and effective oxidation of water to oxygen.

This is reported by the German high-impact journal Angewandte Chemie in a publication rated as a VIP ("very important paper"). Artificial photosynthesis may decisively contribute to solving energy and climate problems, if researchers find a way to efficiently produce hydrogen with the aid of solar energy.

Hydrogen is regarded as the energy carrier of the future. The automobile industry, for example, is working hard to introduce fuel cell technology starting in approximately 2010. However, a fuel cell drive system can only be really environmentally friendly, if researchers succeed in producing hydrogen from renewable sources. Artificial photosynthesis, i.e. the splitting of water into oxygen and hydrogen with the aid of sunlight, could be an elegant way of solving this problem.

However, the road to success is littered with obstacles. One of the obstacles to be overcome is the formation of aggressive substances in the process of water oxidation. Plants solve this problem by constantly repairing and replacing their green catalysts. A technical imitation depends on more stable catalysts as developed and synthesised for the first time by a team from Research Centre Jülich, member of the Helmholtz Association, and from Emory University in Atlanta, USA. The new inorganic metal oxide cluster with a core consisting of four ions of the rare transition metal ruthenium catalyses the fast and effective oxidation of water to oxygen while remaining stable itself.

"Our water-soluble tetraruthenium complex displays its effects in aqueous solution already at ambient temperature," enthuses Prof. Paul Kögerler from the Jülich Institute of Solid State Research, who synthesised and characterised the promising cluster together with his colleague Dr. Bogdan Botar. Catalytic measurements were carried out at Emory University. "In contrast to all other molecular catalysts for water oxidation, our catalyst does not contain any organic components. This is why it is so stable".

Botar explains the next step: "Now the challenge is to integrate this ruthenium complex into photoactive systems, which efficiently convert solar energy into chemical energy". So far, energy is still obtained from a chemical oxidant.

Citation: Yurii V. Geletii, Bogdan Botar, Paul Kögerler, Daniel A. Hillesheim, Djamaladdin G. Musaev, and Craig L. Hill; An All-Inorganic, Stable, and Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation; Angewandte Chemie, DOI: 10.1002/ange.200705652.

Source: Research Centre Jülich

Explore further: Four billion-year-old chemistry in cells today

add to favorites email to friend print save as pdf

Related Stories

Fuel cells for powering homes

Jul 16, 2014

One of the applications that fuel cells may have is the supplying of homes with electrical power. When considering applications of this type that call for greater power, a research group in the UPV/EHU's Department of Mineralogy ...

Improving the cost and efficiency of renewable energy storage

Jul 17, 2014

A major challenge in renewable energy is storage. A common approach is a reaction that splits water into oxygen and hydrogen, and uses the hydrogen as a fuel to store energy. The efficiency of 'water splitting' depends heavily ...

Insights from nature for more efficient water splitting

Jun 30, 2014

Water splitting is one of the critical reactions that sustain life on earth, and could be a key to the creation of future fuels. It is a key in the process of photosynthesis, through which plants produce ...

Molecular snapshots of oxygen formation in photosynthesis

Jul 11, 2014

Researchers from Umeå University, Sweden, have explored two different ways that allow unprecedented experimental insights into the reaction sequence leading to the formation of oxygen molecules in photosynthesis. ...

Chemists develop novel catalyst with two functions

Jul 09, 2014

Chemists at the Ruhr-Universität Bochum have made a decisive step towards more cost-efficient regenerative fuel cells and rechargeable metal-air batteries. They developed a new type of catalyst on the basis ...

Recommended for you

A new approach to creating organic zeolites

23 hours ago

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 0