Scientists find color vision system independent of motion detection

Mar 19, 2008

The vision system used to process color is separate from that used to detect motion, according to a new study by researchers at New York University’s Center for Developmental Genetics and in the Department of Genetics and Neurobiology at Germany’s University of Würzburg.

The findings, which appear in the latest issue of the Proceedings of the National Academy of Sciences, run counter to previous scholarship that suggested motion detection and color contrast may work in tandem.

The study’s authors are: Claude Desplan of NYU’s Center for Developmental Genetics; Reinhard Wolf and Martin Heisenberg of the University of Würzburg; and Satoko Yamaguchi, who holds appointments at both institutions.

Whether motion vision uses color contrast is a controversial issue that has been investigated in several species--from insects to humans. In human vision, it had been widely believed that color and motion were processed by parallel pathways. More recently, however, the complete segregation of motion detection and color vision came into question.

To explore this matter, the NYU and University of Würzburg researchers examined the fruit fly Drosophila. Fruit flies’ development is well-understood by biologists and therefore serves as an appropriate focus for analyses. Specifically, they monitored Drosophila’s optomotor response to moving color stimuli in both normal and mutant flies, with some of the mutant flies lacking the photoreceptors necessary for motion detection and others without the photoreceptors needed to process color.

The results showed that flies lacking the photoreceptors for detecting color showed the same ability to detect motion as normal flies. The researchers then concluded that the color channel does not contribute to motion detection.

“The finding that motion detection is independent of color contrast is somewhat counterintuitive,” said NYU’s Desplan. “Color is thought to increase the salience of objects, such as red fruits in the green foliage of trees.”

“However, our results in the fly demonstrate that color is strictly excluded from processing directional motion information, which suggests two separate functional pathways,” he added. “Whether, inversely, the motion detection system is involved in color vision in Drosophila remains to be determined.”

Source: New York University

Explore further: Engineered E. coli produces high levels of D-ribose

add to favorites email to friend print save as pdf

Related Stories

Patent talk: Google sharpens contact lens vision

Apr 16, 2014

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

High frame rate cinema booed but shows will go on

May 04, 2012

Critics' arguments over whether a film’s actors, screenplay, or music score are worth the price of the ticket have been overshadowed by controversy over the technology used for making the film. Comments are mixed, from ...

Electronic spectacles coming to market soon

Jun 23, 2010

(PhysOrg.com) -- US company PixelOptics has invented electronic spectacles that can automatically change focus as you lower your head to read a book, and could spell the end of the bifocal.

Avatar Mimics You in Real Time

Mar 25, 2008

It’s a little bit like looking in the mirror at your cartoon double, except that the “reflection” is an avatar on your computer screen. Wave your hand, nod your head, speak a sentence, and your avatar ...

Recommended for you

Genome yields insights into golden eagle vision, smell

10 hours ago

Purdue and West Virginia University researchers are the first to sequence the genome of the golden eagle, providing a bird's-eye view of eagle features that could lead to more effective conservation strategies.

Genetic code of the deadly tsetse fly unraveled

11 hours ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

11 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

12 hours ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...