Fungi can tell us about the origin of sex chromosomes

Mar 17, 2008

Fungi do not have sexes, just so-called mating types. A new study being published today in the prestigious journal PLoS shows that there are great similarities between the parts of DNA that determine the sex of plants and animals and the parts of DNA that determine mating types in certain fungi. This makes fungi interesting as new model organisms in studies of the evolutionary development of sex chromosomes.

In the plant and animal kingdoms there are individuals of different sexes, that is, bearers of either many tiny sex cells (males) or a few large ones (females). In the third eukaryote kingdom (organisms with DNA gathered in the cell nucleus), the fungi kingdom, there are no sexes but rather a simpler and more primitive system of different so-called mating types. These are distinguished by different variants of a few specific genes.

There are many ways to determine sex. In humans it is done by sex chromosomes. It is thought that this sex difference arose in the plant and animal kingdom from the simpler system of mating types and that this happened several times independently of each other throughout evolution. The change is believed to have happened with the inhibition of a step in the copying process in DNA, which led to two separate chromosomes. These then developed further over a long period of time.

“In humans, sex chromosomes are believed to have developed over the last 300 million years from a common ‘proto-sex chromosome,’” says Hanna Johannesson, who directed the study.

The new study shows for the first time that even though fungi do not have sexes, there are many similarities between the parts of the genome that determine sex in plants and animals and the parts of the genome that control mating types in certain fungi. The research group specifically studied a spore sac fungus (Neurospora tetrasperma) and can show that the similarities are great, regarding both present-day structure and the way in which it arose.

“It’s hard to study the evolution of sex chromosomes, partly because so many different and important sex-specific characters are tied to them. But much of this can be avoided if we use simpler systems, like fungi, as models.”

Source: Uppsala University

Explore further: Campaigners say protected birds in danger in Malta

add to favorites email to friend print save as pdf

Related Stories

Yeast's lifestyle couples mating with meiosis

Jan 05, 2014

From a biological point of view, the world's most exotic sex lives may be the ones lived by fungi. As a kingdom, they are full of surprises, and a new one reported in the journal Nature seems sure to tit ...

Recommended for you

Genome yields insights into golden eagle vision, smell

10 hours ago

Purdue and West Virginia University researchers are the first to sequence the genome of the golden eagle, providing a bird's-eye view of eagle features that could lead to more effective conservation strategies.

Genetic code of the deadly tsetse fly unraveled

11 hours ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

11 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Engineered E. coli produces high levels of D-ribose

12 hours ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...