Like sweets? You're more like a fruit fly than you think

Mar 17, 2008
Fruit Fly
Fruit Fly. Credit: UCSD

According to researchers at the Monell Center, fruit flies are more like humans in their responses to many sweet tastes than are almost any other species.

The diverse range of molecules that humans experience as sweet do not necessarily taste sweet to other species. For example, aspartame, a sweetener used by humans, does not taste sweet to rats and mice.

However, fruit flies respond positively to most sweeteners preferred by humans, including sweeteners not perceived as sweet by some species of monkeys.

The findings, published in the current issue of the journal Chemical Senses, demonstrate the critical role of environment in shaping the genetic basis of taste preferences and feeding behavior.

“Humans and flies have similar taste responses because they share similar environments and ecological niches, not because their sweet receptors are similar genetically,” notes senior author Paul A.S. Breslin, PhD, a Monell sensory geneticist. “Both are African species, both are omnivorous, and both historically are primarily fruit eaters.”

To compare how molecular structure is related to sweet taste perception in humans and flies, the Monell researchers evaluated how fruit flies respond to 21 nutritive and nonnutritive compounds of varying molecular structure, all of which taste sweet to humans.

Breslin and lead author Beth Gordesky-Gold, PhD, used two behavioral tests to evaluate the flies’ responses to the various sweeteners.

The taste reactivity test measures whether a fly extends its feeding tube, or ‘proboscis,’ to consume a given sweetener. In addition, a two-choice preference test evaluates the flies’ responses to a sweetener by measuring whether they consume it in preference to a control solution (usually water).

The Monell researchers found that fruit flies and humans both respond positively to the same broad range of sweet-tasting molecules.

“The similarity between human and fly responses to sweeteners is astounding, especially in light of the differences in their taste receptors,” notes Gordesky-Gold, a Drosophila (fruit fly) geneticist at Monell.

Sweet receptors belong to a large family of receptors known as G-protein coupled receptors (GPCRs), which are involved in biological processes throughout the body. Human and fly sweet taste GPCRs are presumed to have markedly different structures, an assumption that is based on differences in the genes that code for them.

Since substances will only taste sweet if they are able to bind to and activate a receptor, these two structurally different types of sweet receptors must have similar ‘binding regions’ that fit the same range of molecular shapes.

“That genes could be so divergent in sequence and so similar in physiology and function is truly striking,” says Breslin. “This is a wonderful example of convergent evolution in perceptual behavior, where evolution has taken two different routes to address pressures imposed by shared environment and nutrition.”

Future work will be directed towards modeling how these two structurally different sweet receptors could have highly overlapping sweetener affinities. Such knowledge will increase understanding of how molecules bind to GPCRs, which are targets for many pharmaceutical drugs.

Source: Monell Chemical Senses Center

Explore further: Dairy farms asked to consider breeding no-horn cows

add to favorites email to friend print save as pdf

Related Stories

Taste test: Could sense of taste affect length of life?

May 19, 2014

Perhaps one of the keys to good health isn't just what you eat but how you taste it. Taste buds – yes, the same ones you may blame for that sweet tooth or French fry craving – may in fact have a powerful ...

Foragers find bounty of edibles in urban food deserts

Nov 18, 2014

With the gusto of wine enthusiasts in a tasting room, UC Berkeley professors Philip Stark and Tom Carlson eye, sniff and sample their selections, pronouncing them "robust," "lovely," "voluptuous"—and even ...

Color and texture matter most when it comes to tomatoes

Oct 21, 2014

A new study in the Journal of Food Science, published by the Institute of Food Technologists (IFT), evaluated consumers' choice in fresh tomato selection and revealed which characteristics make the red fruit most appealing.

Recommended for you

Dairy farms asked to consider breeding no-horn cows

13 hours ago

Food manufacturers and restaurants are taking the dairy industry by the horns on an animal welfare issue that's long bothered activists but is little known to consumers: the painful removal of budding horn ...

Italian olive tree disease stumps EU

Mar 27, 2015

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

China starts relocating endangered porpoises: Xinhua

Mar 27, 2015

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.