Researcher working on corn varieties that need less nitrogen

Mar 14, 2008

Jonathan Lynch has made a name for himself doing ground-breaking (pun intended) research on the roots of bean and soybean plants in an effort to improve crop yields in places such as Africa, Asia and Latin America.

The professor of plant nutrition in Penn State's College of Agricultural Sciences has worked with colleagues in China, Africa and Latin America to develop bean and soybean varieties with better root systems that produce better yields in low-phosphorus soils -- work that has major implications for the developing world.

A different but related problem has recently motivated Lynch to turn his attention to the roots of corn grown in the United States and their ability to take up another vital nutrient -- nitrogen. "This is a new direction for us," he said. "We are taking what we learned about root traits that improve phosphorus acquisition from the soil and applying it to developing corn varieties that are more efficient in taking up nitrogen."

In the last few years, corn's ability to take up nitrogen has taken on greater importance because of increasing amounts of the crop being used to generate ethanol, which has contributed to corn prices rising.

"Corn is the single biggest crop grown in this country, and the major cost for corn farmers in the United States is buying nitrogen fertilizer," Lynch said. "Only about half of the nitrogen fertilizer applied to corn is used by the crop; the rest is wasted. If we could improve the efficiency of the corn crop by 20 percent -- that would be huge.

"Because fossil fuels are used to produce nitrogen fertilizer, we are putting so much energy into the fertilizer used in growing corn that we aren't getting much energy out of the process of producing the crop," noted Lynch. "Corn yields are low in Africa because they don't use enough fertilizer, and it is a big problem in this country because nitrogen is expensive. And that is only going to get worse in years ahead as fuel prices rise."

Applying large amounts of nitrogen fertilizer to the land to grow more and more corn is also resulting in increased water pollution, Lynch pointed out. In many of the corn-growing regions of this country, groundwater and wells are contaminated with nitrates that come from nitrogen fertilizer. "Developing more efficient corn roots would decrease water pollution," he said.

Improving the root biology of corn also would reduce air pollution and greenhouse gas emissions (in the making of fertilizer), according to Lynch. Nitrogen pollution in the environment also is linked with the creation of a potent greenhouse gas -- nitrous oxide. "It's not just the energy cost of making the fertilizer -- it's also the wasted fertilizer that generates nitrous oxide," he explained. "According to the U.S. Environmental Protection Agency, two-thirds of nitrous oxide emissions in the United States come from fertilizer. Nitrous oxide is 300 times more potent as a greenhouse gas than carbon dioxide.

"So better corn root biology could reduce water and air pollution, lower corn prices and improve the economic situation around making ethanol," Lynch contended. "And it also could improve the world hunger picture as well."

Source: Penn State

Explore further: Researchers collect soil samples from around the globe in effort to conduct fungi survey

add to favorites email to friend print save as pdf

Related Stories

US northeast braces for flooding after record snow

6 hours ago

Weather forecasters and emergency officials warned Sunday that melting snow would lead to heavy flooding in parts of the US northeast, with hundreds of thousands of people told to brace for fast-rising waters.

How the hummingbird achieves its aerobatic feats

13 hours ago

(Phys.org) —The sight of a tiny hummingbird hovering in front of a flower and then darting to another with lightning speed amazes and delights. But it also leaves watchers with a persistent question: How ...

'Mind the gap' between atomically thin materials

14 hours ago

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding ...

Recommended for you

Parasitic worm genomes: largest-ever dataset released

18 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Male sex organ distinguishes 30 millipede species

18 hours ago

The unique shapes of male sex organs have helped describe thirty new millipede species from the Great Western Woodlands in the Goldfields, the largest area of relatively undisturbed Mediterranean climate ...

How can we avoid kelp beds turning into barren grounds?

22 hours ago

Urchins are marine invertebrates that mould the biological richness of marine grounds. However, an excessive proliferation of urchins may also have severe ecological consequences on marine grounds as they ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.