Caspase-12: Researcher finds new defense mechanism against intestinal inflammation

Mar 12, 2008

The body’s first line of defence against pathogenic bacteria that we ingest may not be the immune system but rather the cells that line the intestine. This surprising conclusion is just one facet of a study by Dr. Maya Saleh, a researcher at the Research institute of the McGill University Health Centre that will be published in the journal Cell Host & Microbe on March 12.

When pathogenic E. coli bacteria infect the body, they bind to epithelial cells on the interior wall of the intestine before injecting infectious material into the cells with a syringe-like mechanism. This contact triggers a defence reaction within the epithelial cell called the Nod pathway, which results in alerting the immune system as well as in the release of antimicrobial peptides called defensins.

“This mechanism expands our idea of immunity: it hinges upon epithelial cells, not immune cells, early on during infection,” says Dr. Saleh. “Furthermore, our study demonstrates that this mechanism is regulated negatively by the Caspase-12 protein, meaning that this protein limits defensin production. This hampers the elimination of bacteria, which then trigger an intense inflammatory reaction manifested by various symptoms including severe diahrrea.”

These fundamental discoveries change our understanding of the immune defence. They also open new avenues for a deeper understanding and more targeted treatments of diseases related to intestinal inflammation, such as diarrheal diseases caused by pathogenic E. coli or Crohn’s disease.

In the case of diarrhea, intestinal inflammation is caused by a process similar to the one described above by Dr. Saleh. Treatments that target Caspase-12 would decrease inflammation by acting on the source rather than on the symptoms.

Crohn’s disease is the chronic inflammation of the digestive tract, and its specific causes are unknown. What is known, however, is that this pathology is linked to a genetic mutation in the Nod pathway. “This study allows us to consider three possible explanations for Crohn’s disease: the Nod pathway mutation could induce either a lack of bacterial “sensing” or a hyperactivation of the immune system resulting in both cases in excessive inflammation against bacteria naturally present in the digestive system; it is also possible that the pathology is caused by an excessive and recurring reaction against a pathogenic microorganism,” says Dr. Saleh. The debate is now open.

Source: McGill University

Explore further: Parasite provides clues to evolution of plant diseases

add to favorites email to friend print save as pdf

Related Stories

Cellulose with Braille for cells

Jan 19, 2015

Artificial implants such as pacemakers often cause complications because the body identifies them as foreign objects. Researchers at ETH Zurich have now demonstrated a simple method to fabricate cellulose-sheaths ...

Extra-short nanowires best for brain

Jan 15, 2015

If in the future electrodes are inserted into the human brain - either for research purposes or to treat diseases - it may be appropriate to give them a 'coat' of nanowires that could make them less irritating for the brain ...

Recommended for you

Study shows one reason why pigeons so rarely crash

13 minutes ago

(Phys.org)—A pair of researchers with Harvard University has uncovered one of the secrets behind pigeons' impressive flight abilities. In their paper published in Proceedings of the National Academy of ...

Gold standard management of the diabetic cat

1 hour ago

The International Society of Feline Medicine (ISFM), the veterinary division of International Cat Care, has convened an expert panel of veterinary clinicians and academics to produce practical guidance to ...

Shark's sixth sense aid attacks from below

1 hour ago

Wobbegong (Orectolobus maculatus) and angel sharks (Squatina australis) have evolved unique electrosensory pores that aid attacks on unsuspecting prey from beneath, according to a recent study.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.