Caspase-12: Researcher finds new defense mechanism against intestinal inflammation

Mar 12, 2008

The body’s first line of defence against pathogenic bacteria that we ingest may not be the immune system but rather the cells that line the intestine. This surprising conclusion is just one facet of a study by Dr. Maya Saleh, a researcher at the Research institute of the McGill University Health Centre that will be published in the journal Cell Host & Microbe on March 12.

When pathogenic E. coli bacteria infect the body, they bind to epithelial cells on the interior wall of the intestine before injecting infectious material into the cells with a syringe-like mechanism. This contact triggers a defence reaction within the epithelial cell called the Nod pathway, which results in alerting the immune system as well as in the release of antimicrobial peptides called defensins.

“This mechanism expands our idea of immunity: it hinges upon epithelial cells, not immune cells, early on during infection,” says Dr. Saleh. “Furthermore, our study demonstrates that this mechanism is regulated negatively by the Caspase-12 protein, meaning that this protein limits defensin production. This hampers the elimination of bacteria, which then trigger an intense inflammatory reaction manifested by various symptoms including severe diahrrea.”

These fundamental discoveries change our understanding of the immune defence. They also open new avenues for a deeper understanding and more targeted treatments of diseases related to intestinal inflammation, such as diarrheal diseases caused by pathogenic E. coli or Crohn’s disease.

In the case of diarrhea, intestinal inflammation is caused by a process similar to the one described above by Dr. Saleh. Treatments that target Caspase-12 would decrease inflammation by acting on the source rather than on the symptoms.

Crohn’s disease is the chronic inflammation of the digestive tract, and its specific causes are unknown. What is known, however, is that this pathology is linked to a genetic mutation in the Nod pathway. “This study allows us to consider three possible explanations for Crohn’s disease: the Nod pathway mutation could induce either a lack of bacterial “sensing” or a hyperactivation of the immune system resulting in both cases in excessive inflammation against bacteria naturally present in the digestive system; it is also possible that the pathology is caused by an excessive and recurring reaction against a pathogenic microorganism,” says Dr. Saleh. The debate is now open.

Source: McGill University

Explore further: Dwindling wind may tip predator-prey balance

add to favorites email to friend print save as pdf

Related Stories

New tool identifies therapeutic proteins in a 'snap'

Aug 21, 2014

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Genetics reveal effects of deadly frog fungus

Aug 07, 2014

(Phys.org) —A deadly fungus has decimated certain populations of amphibians globally for the past few decades, but scientists remain unclear about the exact mechanisms that lead to its disease.

Recommended for you

Dwindling wind may tip predator-prey balance

Sep 19, 2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air—and the soybeans—were still?

Environmental pollutants make worms susceptible to cold

Sep 19, 2014

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Research helps steer mites from bees

Sep 19, 2014

A Simon Fraser University chemistry professor has found a way to sway mites from their damaging effects on bees that care and feed the all-important queen bee.

User comments : 0