Invasive species can produce 'hotspots of evolutionary novelty,' study shows

Mar 10, 2008

When exotic species invade new territory, they often present a major threat to the other plants and animals living there—that much is clear. But researchers writing in the March 11th issue of Current Biology, a publication of Cell Press, now show that, in addition to their destructive tendencies, invasive species can also have a surprisingly “creative” side.

The researchers discovered that an invasive population of the freshwater snail Melanoides tuberculata, found on the island of Martinique, harbors a tremendous amount of genetic variation for key life-history traits, such as fecundity, juvenile size, and age at first reproduction. And that means they have a remarkably large potential for evolutionary change.

“It is widely believed that despite their tremendous ecological success, invasive populations, being founded by few individuals, lack genetic variability for important traits,” said Benoît Facon of INRA – SPE in France. “Now, analyzing a freshwater snail example, we document how a spectacular genetic diversity for key ecological traits can be accumulated in invasive populations.”

They provide further evidence that the snails’ genetic diversity stems from multiple invasions of individuals hailing from different parts of their native Asia. That diversity has since been amplified as genetically distinct immigrants mated with one another to produce new generations of offspring with novel trait combinations. In fact, they said that the level of genetic variation seen in the snails is among the highest ever recorded among animals for fundamental life-history traits.

“Thus bioinvasions, destructive as they may be, are not synonyms of genetic uniformity and can be hotspots of evolutionary creativity,” Facon said.

M. tuberculata offered an “unparalleled opportunity” to study the adaptive potential of invasives because of its mixed reproductive system, meaning that the snails can reproduce both sexually and, more often, asexually. Therefore, many individuals in a population are clones of one another, each clone representing a “morph” with a distinctive shell. In Martinique, the researchers found seven such morphs: five of introduced origin, plus two produced by sexual crosses on the island.

The situation “provides the opportunity to observe the build-up of genetic variance in slow motion,” the researchers said, “since introduced genotypes remain intact even when they coexist with recombined genotypes produced by sexual reproduction.”

Although the mostly asexual breeding system of M. tuberculata is not a universal characteristic of invasive species, the researchers said they see no reason why multiple introductions could not generate similar trait diversity in purely sexual invasive species.

“The perception of biological invasions by scientists and the general public has up to now focused mostly on their destructive impact, ranging from economic loss to the threat of homogenization of earth biota and uniform domination by a few winning genotypes or species,” they added. “Our study adds to the growing body of evidence that invasions may also be creative and bring together original assemblages of genotypes or species, making them hotspots of evolutionary and ecological novelty. In order to predict the consequences of increased international trade and long-distance introductions, future studies will have to consider the two faces of biological invasions.”

Source: Cell Press

Explore further: How do our muscles work? Scientists reveal important new insights into muscle protein

add to favorites email to friend print save as pdf

Related Stories

Genetics denote feral cat source

Nov 18, 2014

Feral cats arrived on Dirk Hartog Island in two separate waves, but are now reproductively isolated, according to genetic analysis.

Invasive species threaten global biodiversity

Nov 06, 2014

Until a few decades ago, there were no beavers in Patagonia. That changed when 20 pairs of the tree-chewing creature were introduced with the hopes of creating a fur industry.

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

3 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

Bitter food but good medicine from cucumber genetics

3 hours ago

High-tech genomics and traditional Chinese medicine come together as researchers identify the genes responsible for the intense bitter taste of wild cucumbers. Taming this bitterness made cucumber, pumpkin ...

New button mushroom varieties need better protection

7 hours ago

A working group has recently been formed to work on a better protection of button mushroom varieties. It's activities are firstly directed to generate consensus among the spawn/breeding companies to consider ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.