Scientists identify role of tiny RNAs in controlling stem cell fate

Mar 05, 2008

Researchers at the Gladstone Institute of Cardiovascular Disease (GICD) and the University of California, San Francisco have identified for the first time how tiny genetic factors called microRNAs may influence the differentiation of pluripotent embryonic stem (ES) cells into cardiac muscle.

As reported in the journal Cell Stem Cell, scientists in the lab of GICD Director, Deepak Srivastava, MD, demonstrated that two microRNAs, miR-1 and miR-133, which have been associated with muscle development, not only encourage heart muscle formation, but also actively suppress genes that could turn the ES cells into undesired cells like neurons or bone.

“Understanding how pluripotent stem cells can be used in therapy requires that we understand the myriad processes and factors that influence cell fate,” said Dr. Srivastava. “This work shows that microRNAs can function both in directing how ES cells change into specific cells—as well as preventing these cells from developing into unwanted cell types. ”

The differentiation of ES cells into heart cells or any other type of adult cell is a very complicated process involving many factors. MicroRNAS, or miRNAs, seem to act as rheostats or “dimmer switches” to fine-tune levels of important proteins in cells. More than 450 human miRNAs have been described and each is predicted to regulate tens if not hundreds of proteins that may determine cellular differentiation.

While many ES cell-specific miRNAs have been identified, the role of individual miRNAs in ES cell differentiation had not previously been determined. The Gladstone team showed that miRNAs can control how pluripotent stem cells determine their fate, or “cell lineage” – in this case as cardiac muscle cells.

Specifically, they found that miR-1 and miR-133 are active at the early stages of heart cell formation, when an ES cell is first “deciding” to become mesoderm, one of the three basic tissue layers in mammals and other organisms. Activity of either miR-1 or miR-133 in ES cells caused genes that encourage mesoderm formation to be turned on. Equally important, they caused other genes that would have told the cell to become ectoderm or endoderm to turn off. For example, expression of a specific factor called Delta-like 1 was repressed by miR-1. Removal of this factor from cells by other methods also caused the cells to begin transforming into heart cells.

“Our findings provide insight into the fine regulation of cells and genes that is needed for a heart to form,” said Kathy Ivey, PhD, a California Institute of Regenerative Medicine (CIRM) postdoctoral fellow and lead author on the study. “By better understanding this complicated system, in the future, we may be able to identify ways to treat or prevent childhood and adult diseases that affect the heart.”

Source: Gladstone Institutes

Explore further: Researchers discover 'milk' protein that enables survival of the species

add to favorites email to friend print save as pdf

Related Stories

New study shows safer methods for stem cell culturing

Feb 25, 2015

A new study led by researchers at The Scripps Research Institute (TSRI) and the University of California (UC), San Diego School of Medicine shows that certain stem cell culture methods are associated with increased DNA mutations. ...

Combination of imaging methods improves diagnostics

Feb 19, 2015

Scientists from the Helmholtz Zentrum München and the Technische Universität München have succeeded in a breakthrough for the further development of contrast agents and consequently improved diagnostics with imaging using ...

New nanogel for drug delivery

Feb 19, 2015

Scientists are interested in using gels to deliver drugs because they can be molded into specific shapes and designed to release their payload over a specified time period. However, current versions aren't ...

Recommended for you

Genetically speaking, mammals are more like their fathers

45 minutes ago

You might resemble or act more like your mother, but a novel research study from UNC School of Medicine researchers reveals that mammals are genetically more like their dads. Specifically, the research shows ...

Conservation organizations need to keep up with nature

1 hour ago

Nature is on the move. As the impacts of climate change reveal themselves, species and ecosystems are moving in response. This poses a fundamental challenge to conservation organizations—how do you conserve ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.