Scientists identify role of tiny RNAs in controlling stem cell fate

Mar 05, 2008

Researchers at the Gladstone Institute of Cardiovascular Disease (GICD) and the University of California, San Francisco have identified for the first time how tiny genetic factors called microRNAs may influence the differentiation of pluripotent embryonic stem (ES) cells into cardiac muscle.

As reported in the journal Cell Stem Cell, scientists in the lab of GICD Director, Deepak Srivastava, MD, demonstrated that two microRNAs, miR-1 and miR-133, which have been associated with muscle development, not only encourage heart muscle formation, but also actively suppress genes that could turn the ES cells into undesired cells like neurons or bone.

“Understanding how pluripotent stem cells can be used in therapy requires that we understand the myriad processes and factors that influence cell fate,” said Dr. Srivastava. “This work shows that microRNAs can function both in directing how ES cells change into specific cells—as well as preventing these cells from developing into unwanted cell types. ”

The differentiation of ES cells into heart cells or any other type of adult cell is a very complicated process involving many factors. MicroRNAS, or miRNAs, seem to act as rheostats or “dimmer switches” to fine-tune levels of important proteins in cells. More than 450 human miRNAs have been described and each is predicted to regulate tens if not hundreds of proteins that may determine cellular differentiation.

While many ES cell-specific miRNAs have been identified, the role of individual miRNAs in ES cell differentiation had not previously been determined. The Gladstone team showed that miRNAs can control how pluripotent stem cells determine their fate, or “cell lineage” – in this case as cardiac muscle cells.

Specifically, they found that miR-1 and miR-133 are active at the early stages of heart cell formation, when an ES cell is first “deciding” to become mesoderm, one of the three basic tissue layers in mammals and other organisms. Activity of either miR-1 or miR-133 in ES cells caused genes that encourage mesoderm formation to be turned on. Equally important, they caused other genes that would have told the cell to become ectoderm or endoderm to turn off. For example, expression of a specific factor called Delta-like 1 was repressed by miR-1. Removal of this factor from cells by other methods also caused the cells to begin transforming into heart cells.

“Our findings provide insight into the fine regulation of cells and genes that is needed for a heart to form,” said Kathy Ivey, PhD, a California Institute of Regenerative Medicine (CIRM) postdoctoral fellow and lead author on the study. “By better understanding this complicated system, in the future, we may be able to identify ways to treat or prevent childhood and adult diseases that affect the heart.”

Source: Gladstone Institutes

Explore further: Aggressive conifer removal benefits Sierra aspen

add to favorites email to friend print save as pdf

Related Stories

From dried cod to tissue sample preservation

Nov 19, 2014

Could human tissue samples be dried for storage, instead of being frozen? Researchers are looking at the salt cod industry for a potential tissue sample drying technology that could save money without sacrificing tissue quality.

Scientists map mouse genome's 'mission control centers'

Nov 19, 2014

When the mouse and human genomes were catalogued more than 10 years ago, an international team of researchers set out to understand and compare the "mission control centers" found throughout the large stretches ...

Foragers find bounty of edibles in urban food deserts

Nov 18, 2014

With the gusto of wine enthusiasts in a tasting room, UC Berkeley professors Philip Stark and Tom Carlson eye, sniff and sample their selections, pronouncing them "robust," "lovely," "voluptuous"—and even ...

Recommended for you

Evolution: The genetic connivances of digits and genitals

8 hours ago

During the development of mammals, the growth and organization of digits are orchestrated by Hox genes, which are activated very early in precise regions of the embryo. These "architect genes" are themselves regulated by ...

Study: Volunteering can help save wildlife

8 hours ago

Participation of non-scientists as volunteers in conservation can play a significant role in saving wildlife, finds a new scientific research led by Duke University, USA, in collaboration with Wildlife Conservation ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.