Researchers Developing More Efficient Ethanol Production Method

Feb 26, 2008

A University of Wyoming professor has received a $485,000 grant to explore a more economical way to produce ethanol.

Patrick Johnson, assistant professor in the UW College of Engineering and Applied Science Department of Chemical and Petroleum Engineering, received the four-year grant from the U.S. Department of Transportation with $50,000 in matching funds from the UW School of Energy Resources. The grant is through the 2007 North Central Sun Grant Regional Competitive Grant Program.

"Ethanol is gaining widespread attention as an alternative transportation fuel to reduce foreign dependence on oil and to mitigate total carbon emissions," he says. "However, major technological advances are necessary to achieve economical, large-scale production from biomass. This project seeks to improve the efficiency of the conversion of cellulosic biomass into ethanol."

The project involves developing recyclable biocatalysts for use in the process that converts cellulose into fermentable sugars for ethanol production.

"When producing ethanol from biomass, enzymes are approximately 40 percent of the total production cost," Johnson says. "So by recycling the enzymes that convert cellulose into sugars, the costs might be lowered."

Researchers will fabricate enzyme nanoparticles with a magnetic core along with enzymes immobilized on stimuli-responsive polymers -- substances composed of molecules with large molecular mass. Well known examples of polymers include plastics, DNA and proteins. Johnson explains that stimuli responsiveness allows the researchers to make polymers that will precipitate out of solution with a slight change in pH (a measure of acidity or alkalinity in a solution) or temperature.

"Responsive polymers can be precipitated out of solution after the reaction, again for recycling," Johnson says.

The project's other principal researchers are Youquing Shen, associate professor with the UW Department of Chemical and Petroleum Engineering, and Song Jin, scientist with the Western Research Institute at UW.

Source: University of Wyoming

Explore further: Beyond the lithium ion—a significant step toward a better performing battery

Related Stories

Quantum dot TVs are unveiled at China tech expo

37 minutes ago

At this month's China Information Technology Expo (CITE) event, a headline-maker was the launch of quantum dot televisions, by QD Vision and Konka, the consumer electronics company. QD Vision's calling card ...

A call to US educators: Learn from Canada

3 hours ago

As states and the federal government in the U.S. continue to clash on the best ways to improve American education, Canada's Province of Ontario manages successful education reform initiatives that are equal parts cooperation ...

Recommended for you

Researchers show soft sides with layered fabric 3-D printer

Apr 17, 2015

A team from Disney Research and Carnegie Mellon University have devised a 3-D printer that layers together laser-cut sheets of fabric to form soft, squeezable objects such as bunnies, doll clothing and phone cases. These ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

3 / 5 (2) Feb 26, 2008
Pyrolysis of vegetable matter will yield 90% of the energy contained it it, versus 70% that can be obtained from converting to ethanol. Switchgrass can be made into biodiesel without shaking up the corn and other food grain markets. Why is it taking so long? Biodeisel is a much less radical idea than hydrogen propelled vehicles.
not rated yet Feb 26, 2008
With new catalytic converter materials it is possible to have Diesels not emitting NOX which is a problem. Diesels produce more Horsepower from the fuel than gasoline does. More Specific Heat Content.
not rated yet Feb 27, 2008
"Pyrolysis of vegetable matter will yield 90% of the energy contained it it, versus 70% that can be obtained from converting to ethanol."

Pyrolysis yields char and gases that may be cooled into a 'pyrolytic oil'.

The char could be useful for retaining some more water and fertilizer in soil or it could be burnt for process heat.

The pyrolytic oil is a kind of tar-like substance with high oxygen content. It doesn't spontaneously ignite in a diesel engine and it is perishable. It can "degas", releasing its disolved gaseous products and it tends to become more viscous over time due to polymerization.

If you're subsequently doing gasification and producing some kind of more practical syn-fuel you spend a significant fraction of the energy content on partially combusting the feed-stock. you won't get anywhere near 90% of the energy into the liquid fuel; but you might be able to supply excess heat to nearby factories needing process heat or to district heating.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.