Researchers create first chikungunya animal model

Feb 19, 2008

Researchers have developed the first animal model of the infection caused by chikungunya virus (CHIKV), an emerging arbovirus associated with large-scale epidemics that hit the Indian Ocean (especially the French Island of La Réunion) in 2005, later spreading to India, and Italy in 2007. Using this mouse model, scientists of the Institut Pasteur and INSERM determined which tissues and cells are infected by the virus in both the mild and severe forms of the disease it causes. They detail their findings in an article published February 15 in the open-access journal PLoS Pathogens.

The main symptoms of CHIKV —fever, joint and muscle pains, and skin rash— are now well known by the medical community and the general public. However, the pathophysiology of this infection remains poorly understood, notably the factors responsible for severe disease with neurological manifestations, which are mainly observed among newborns and the elderly.

The CHIKV animal model carries a deletion of a gene encoding one of the key proteins in the innate antiviral immune response. When only one of the two copies of the gene is deleted, the mice mimic the disease in its benign form. With both versions deleted, and therefore no ability to produce the protein, they constitute a model for the severe forms of the infection.

With this model, the researchers show how after an initial phase of viral replication in the liver, the infection extends to the joints, muscles and skin — where the symptoms materialize in humans. In the most severe cases, it then disseminates to the central nervous system. The model also allowed the investigators to study the mother-to-child transmission of the virus, a complication that was recorded for the first time during the La Réunion outbreak.

The development of this first mouse model provides chikungunya researchers with an experimental tool that sheds light on the pathophysiology of the infection, paving the way for future treatments and vaccine candidates against this emerging viral disease in vivo.

Citation: Couderc T, Chre´tien F, Schilte C, Disson O, Brigitte M, et al. (2008) A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog 4(2): e29. doi:10.1371/journal.ppat.0040029

Source: Public Library of Science

Explore further: Designer potatoes on the menu to boost consumption

add to favorites email to friend print save as pdf

Related Stories

Physicists discuss quantum pigeonhole principle

3 hours ago

The pigeonhole principle: "If you put three pigeons in two pigeonholes at least two of the pigeons end up in the same hole." So where's the argument? Physicists say there is an important argument. While the ...

Giant crater in Russia's far north sparks mystery

5 hours ago

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

6 hours ago

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Giant anteaters kill two hunters in Brazil

6 hours ago

Giant anteaters in Brazil have killed two hunters in separate incidents, raising concerns about the animals' loss of habitat and the growing risk of dangerous encounters with people, researchers said.

Recommended for you

Giant anteaters kill two hunters in Brazil

6 hours ago

Giant anteaters in Brazil have killed two hunters in separate incidents, raising concerns about the animals' loss of habitat and the growing risk of dangerous encounters with people, researchers said.

Rising temperatures can be hard on dogs

Jul 25, 2014

The "dog days of summer" are here, but don't let the phrase fool you. This hot time of year can be dangerous for your pup, says a Kansas State University veterinarian.

User comments : 0