New technique promises to aid doctor's ability to identify, treat bacterial infections

Feb 19, 2008

A new technique developed by a University of Central Florida chemist will help physicians more quickly identify the bacterial infections patients have so they can be treated in hours instead of days.

As more bacterial strains resistant to many drugs emerge, it becomes more critical to quickly identify infections and the antibiotics that would most effectively treat them. Such quick identifications become even more important during epidemics because large numbers of samples would have to be tested at once.

Assistant Professor J. Manuel Perez’s new technique also promises to give research institutes and pharmaceutical companies a quicker and cheaper way of developing new antibiotics to combat super bugs.

The results of Perez’s study were recently published online in Analytical Chemistry (pubs.acs.org/cgi-bin/asap.cgi/… ap/pdf/ac701969u.pdf). The research was funded in part by the National Institutes of Health.

“The method really gives doctors quicker access to test results so they can treat their patients more quickly,” Perez said from his lab at the Nanoscience Technology Center at UCF. “But there are more applications. This method can also be used by research facilities and big pharmaceutical companies for the high throughput screening of drugs for antibacterial activity.”

Perez uses gold nanoparticles coated with a sugar and a protein that binds to sugars. Meanwhile, a variety of antibiotics are placed in the same solution. A spectrophotometer reads optical variations in the gold nanoparticle solution as the sugar and protein shift , which in turn demonstrate which antibiotics effectively halt bacteria growth and which ones do not. Results can be obtained within a couple of hours, in contrast to the traditional methods, which can take days to complete. And hundreds of samples can be tested at once using this technique because the amount of bacteria and antibiotic needed is small.

Pharmaceutical companies can use existing equipment to read the variations, which means they do not have to buy new equipment. Perez’s study also shows that the technique is as sensitive and accurate as the traditional, more time-consuming approach.

“We’re very excited and very pleased with the results,” Perez said.

Source: University of Central Florida

Explore further: Classical enzymatic theory revised by including water motions

add to favorites email to friend print save as pdf

Related Stories

Questioning GMOs

Nov 07, 2014

Are genetically engineered foods safe? Truth is, we probably don't know. "The scientific debate is not resolved, even though many people are claiming it is," says Sheldon Krimsky, the Lenore Stern Professor ...

Thinking small to stop superbugs

Nov 05, 2014

With the help of cutting edge microscopy, new research at U of T Mississauga could help stop "superbugs" in their tracks.

Bio researchers receive patent to fight superbugs

Oct 07, 2014

Superbugs, antibiotic-resistant bacteria, have been on the rise since antibiotics were first introduced 80 years ago. That's because these germ-fighting agents have lost their punch from being overprescribed ...

Recommended for you

Heat-conducting plastic developed

Nov 25, 2014

The spaghetti-like internal structure of most plastics makes it hard for them to cast away heat, but a University of Michigan research team has made a plastic blend that does so 10 times better than its conventional ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.