Scientists move towards stem cell therapy trials to mend shattered bones

Feb 18, 2008

The UK Stem Cell Foundation, the Medical Research Council and Scottish Enterprise, in partnership with the Chief Scientist’s Office, are funding a £1.4 million project to further the research at the University of Edinburgh with a view to setting up a clinical trial within two years.

The initiative could have a major impact on treating conditions such as osteoarthritis as well as treating trauma victims whose bones have been shattered beyond repair.

It involves using a “bioactive scaffold” made to protect the stem cells and simulate their growth into bone or cartilage once they are placed in the affected area. The scaffold consists of a fairly rigid mesh structure, coated or impregnated with a drug that affects the patients cells.

Dr Brendon Noble, of the University of Edinburgh’s MRC Centre for Regenerative Medicine, said: “This is a novel approach in terms of treating damaged bones and cartilage. The aim is to translate the knowledge we have gained from bone biology studies into tangible treatments for patients.”

Researchers will also work with clinicians, headed by Hamish Simpson, professor of orthopaedics and trauma at the University of Edinburgh, with a view to eventually translating their findings into treatments for patients.

As well as using cells derived from bone marrow, the scientists will work in collaboration with the Scottish National Blood Transfusion Service to culture bone forming cells derived from blood.

The advantage of these blood-sourced cells is that they can be extracted without the need for surgery. The use of a patient’s own stem cells means that they are also unlikely to be rejected.

Dr Anna Krassowska, research manager for the UK Stem Cell Foundation said: “In the UK hip fractures kill 14,000 elderly people every year - more than many cancers. The worldwide market for orthopaedic devices alone represents some $17 billion. This research has the potential not only to impact on a significant number of people's lives but to open up one of the largest stem cell markets in the industry.”

For nearly a decade, scientists have known broadly the right chemical conditions required to encourage undifferentiated stem cells taken from a patient's bone marrow to change into bone and cartilage cells in the laboratory. However, the use of the “bioactive scaffold” being developed at the University of Edinburgh aims to enable these cells to grow within the human body. The initial clinical trial, resulting from the laboratory work is likely to involve around 30 patients.

Source: University of Edinburgh

Explore further: Researchers collect soil samples from around the globe in effort to conduct fungi survey

add to favorites email to friend print save as pdf

Related Stories

Audi to develop Tesla Model S all-electric rival

6 hours ago

The Tesla Model S has a rival. Audi is to develop all-electric family car. This is to be a family car that will offer an all-electric range of 280 miles (450 kilometers), according to Auto Express, which ...

New largest number factored on a quantum device is 56,153

8 hours ago

(Phys.org)—Researchers have set a new record for the quantum factorization of the largest number to date, 56,153, smashing the previous record of 143 that was set in 2012. They have shown that the exact same room-t ...

Recommended for you

Parasitic worm genomes: largest-ever dataset released

16 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Male sex organ distinguishes 30 millipede species

17 hours ago

The unique shapes of male sex organs have helped describe thirty new millipede species from the Great Western Woodlands in the Goldfields, the largest area of relatively undisturbed Mediterranean climate ...

How can we avoid kelp beds turning into barren grounds?

21 hours ago

Urchins are marine invertebrates that mould the biological richness of marine grounds. However, an excessive proliferation of urchins may also have severe ecological consequences on marine grounds as they ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.