Humans inhabited New World's doorstep for 20,000 years

Feb 13, 2008

The human journey from Asia to the New World was interrupted by a 20,000-year layover in Beringia, a once-habitable region that today lies submerged under the icy waters of the Bering Strait.

Furthermore, the New World was colonized by approximately 1,000 to 5,000 people — a substantially higher number than the 100 or fewer individuals of previous estimates.

The developments, to be reported by University of Florida Genetics Institute scientists in the open-access journal PLoS ONE on February 13, help shape understanding of how the Americas came to be populated — not through a single expansion event that is put forth in most theories, but in three distinct stages separated by thousands of generations.

“Our model makes for a more interesting, complex scenario than the idea that humans diverged from Asians and expanded into the New World in a single event,” said Connie Mulligan, Ph.D., an associate professor of anthropology at the College of Liberal Arts and Sciences and assistant director of the UF Genetics Institute. “If you think about it, these people didn’t know they were going to a new world. They were moving out of Asia and finally reached a landmass that was exposed because of lower sea levels during the last glacial maximum, but two major glaciers blocked their progress into the New World. So they basically stayed put for about 20,000 years. It wasn’t paradise, but they survived. When the North American ice sheets started to melt and a passage into the New World opened, we think they left Beringia to go to a better place.”

UF scientists analyzed DNA sequences from Native American, New World and Asian populations with the understanding that modern DNA is forged by an accumulation of events in the distant past, and merged their findings with data from existing archaeological, geological and paleoecological studies.

The result is a unified, interdisciplinary theory of the “peopling” of the New World, which shows a gradual migration and expansion of people from Asia through Siberia and into Beringia starting about 40,000 years ago, a long waiting period in Beringia where the population size remained relatively stable, and finally a rapid expansion into North America through Alaska or Canada about 15,000 years ago.

“This was the raw material, the original genetic source for all of the Americas,” said Michael Miyamoto, Ph.D., a professor and associate chairman of zoology in UF’s College of Liberal Arts and Sciences. “You can think of the people as a distinct group blocked by glaciers to the east. They had already been west, and had no reason to go back. They had entered this waiting stage and for 20,000 years, generations were passing and genetic differences were accumulating. By looking at the kinds and frequencies of these mutations in modern populations, we can get an idea of when the mutations arose and how many people were around to carry them.”

Working with mitochondrial DNA — passed exclusively from mothers to their children — and nuclear DNA, which contains genes from both parents, UF scientists essentially added genetic information to what had been known about the archaeology, changes in climate and sea level, and geology of Beringia.

The result is a detailed scenario for the timing and scale of the initial migration to the Americas, more comparable to an exhaustive video picture rather than a single snapshot in time.

“Their technique of reading population history by using coalescence rates to analyze genetic data is very impressive — innovative anthropology and edge-of-the-seat population study,” said Henry C. Harpending, Ph.D., a distinguished professor and endowed chairman of anthropology at the University of Utah and a member of the National Academy of Sciences who was not involved with the research. “The idea that people were stuck in Beringia for a long time is obvious in retrospect, but it has never been promulgated. But people were in that neighborhood before the last glacial maximum and didn’t get into North America until after it. It’s very plausible that a bunch of them were stuck there for thousands of years.”

As for Beringia, sea levels rose about 10,000 to 11,000 years ago, submerging the land and creating the Bering Strait that now separates North America from Siberia with about 100 kilometers of open, frigid water.

“Our theory predicts much of the archeological evidence is underwater,” said Andrew Kitchen, a Ph.D. candidate in the anthropology department at UF who participated in the research. “That may explain why scientists hadn’t really considered a long-term occupation of Beringia.”

UF researchers believe that their synthesis of a large number of different approaches into a unified theory will create a platform for scientists to further analyze genomic and non-genetic data as they become available.

Citation: Kitchen A, Miyamoto MM, Mulligan CJ (2008) A Three-Stage Colonization Model for the Peopling of the Americas. PLoS ONE 3(2): e1596. doi:10.1371/journal.pone.0001596 (www.plosone.org/doi/pone.0001596)

Source: Public Library of Science

Explore further: Metabolic path to improved biofuel production

add to favorites email to friend print save as pdf

Related Stories

Kennewick Man's DNA likely that of a Native

Jan 20, 2015

Nearly two decades after the ancient skeleton called Kennewick Man was discovered on the banks of the Columbia River, the mystery of his origins appears to be nearing resolution.

Scientists say early Americans arrived earlier

Mar 20, 2008

A team led by two Texas A&M University anthropologists now believes the first Americans came to this country 1,000 to 2,000 years earlier than the 13,500 years ago previously thought, which could shift historic timelines.

Recommended for you

Metabolic path to improved biofuel production

6 minutes ago

Researchers with the Energy Biosciences Institute (EBI), a partnership that includes the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, have found a way ...

Deadly frog fungus dates back to 1880s, studies find

1 hour ago

A deadly fungus responsible for the extinction of more than 200 amphibian species worldwide has coexisted harmlessly with animals in Illinois and Korea for more than a century, a pair of studies have found.

Wild yaks: Shaggy barometers of climate change

3 hours ago

A new study led by WCS (Wildlife Conservation Society), University of Montana, Qinghai Forestry Bureau, Keke Xili National Nature Reserve, and other groups finds that climate change and past hunting in the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.