Researchers find the root of the evolutionary emergence of vertebrates

Feb 11, 2008

Dartmouth College researchers and colleagues from the University of Bristol in the U.K. have traced the beginnings of complex life, i.e. vertebrates, to microRNA. The researchers argue that the evolution of microRNAs, which regulate gene expression, are behind the origin of early vertebrates.

“This study not only points the way to understanding the evolutionary origin of our own lineage, but it also helps us to understand how our own genome was assembled in deep time,” says Kevin Peterson, an author on the paper and an associate professor of biological sciences at Dartmouth.

Their study was published on February 11, 2008, issue of the Proceedings of the National Academy of Sciences.

Peterson worked with Dartmouth graduate student Alysha Heimberg, Vanessa Moy, a Dartmouth biology research assistant, and Lorenzo Sempere, a researcher with Dartmouth Medical School. Philip Donoghue of Bristol University’s Department of Earth Sciences was also a co-author. They showed that microRNAs, a class of tiny molecules only recently discovered residing within what has usually been considered junk DNA, are hugely diverse in even the most lowly of vertebrates, but relatively few are found in the genomes of our invertebrate relatives.

“There was an explosive increase in the number of new microRNAs added to the genome of vertebrates and this is unparalleled in evolutionary history,” says Heimberg.

The team studied the genomics of primitive living fishes, such as sharks and lampreys, and their spineless relatives, like the sea squirt. By reconstructing the acquisition history of microRNAs shared between human and mice, the researchers determined that the highest rate of microRNA innovation in the vertebrate lineage occurred before the divergence between the living jawless fishes like the lamprey and the jawed fishes like the shark, but after the divergence of vertebrates from their invertebrate chordate relatives, such as the sea squirt.

Co-author Donoghue adds, “Most of these new genes are required for the growth of organs that are unique to vertebrates, such as the liver, pancreas and brain. Therefore, the origin of vertebrates and the origin of these genes is no coincidence.”

Source: Dartmouth College

Explore further: Orb-weaving spiders living in urban areas may be larger

add to favorites email to friend print save as pdf

Related Stories

Research gains toehold on skeletal evolution

Nov 04, 2013

The developmental rules for forming a foot just got a little simpler. New research led by UMass Dartmouth Biology faculty member Dr. Kathryn Kavanagh and Harvard Medical School Professor Cliff Tabin, joined by Professor Uri ...

'Junk DNA' uncovers the nature of our ancient ancestors

Oct 20, 2010

The key to solving one of the great puzzles in evolutionary biology, the origin of vertebrates -- animals with an internal skeleton made of bone -- has been revealed in new research from Dartmouth College ...

Recommended for you

Orb-weaving spiders living in urban areas may be larger

11 minutes ago

A common orb-weaving spider may grow larger and have an increased ability to reproduce when living in urban areas, according to a study published August 20, 2014 in the open-access journal PLOS ONE by Eli ...

Sequencing the genome of salamanders

4 hours ago

University of Kentucky biologist Randal Voss is sequencing the genome of salamanders. Though we share many of the same genes, the salamander genome is massive compared to our own, about 10 times as large.

User comments : 0