Riding on a cushion of vapor

Mar 28, 2006

When a tiny droplet of cold fluid mixes with a high-temperature solid particle, a vapor layer forms between them, and they never actually touch. Ohio State University researchers have performed the first accurate computer simulation of this small-scale phenomenon.

Ultimately, this knowledge could enable engineers to boost the efficiency of chemical plants, power plants, and oil refineries, or any place where hot particles and cold fluid mix.

The find contributes to the fundamental understanding of a decades-old problem, explained L.S. Fan, a Distinguished University Professor and the John C. Easton Professor of Engineering in the Department of Chemical and Biomolecular Engineering at Ohio State.

Fan described his findings at the national meeting of the American Chemical Society on March 28, as he received the E.V. Murphree Award in Industrial and Engineering Chemistry.

In the 1950s, scientists who re-created industrial chemical conditions in the lab noticed something interesting about the way two objects collide. When a flat solid surface is much hotter than a liquid droplet, the droplet never makes direct contact with the solid surface. The droplet dances around on the hot surface without touching it.

Fan likened the effect to what happens when water hits the surface of a hot cooking pan.

"The water sizzles and dances around," he said. "It's the same for droplets in contact with spherical particles in a chemical reactor. But then the question becomes, is the heat effectively transferred during the contact? And it turns out that only a very small amount of the heat is transferred due to a very short contact time."

Though scientists knew of this phenomenon for decades, they were not exactly sure how it happened. The technology needed to answer the question -- specifically, the numerical simulation required to produce highly detailed three-dimensional characteristics of the process -– were not attempted until recently.

Fan and his team derived equations to explain how heat travels between separated surfaces. Then they compared three-dimensional supercomputer simulations based on their equations to experiments on actual collisions in the laboratory.

They found that, as heat flows from the surface of a hot particle to a cold droplet, a vapor layer forms between them. The vapor layer forms a cushion that buffers the droplet's impact, so that it bounces off the particle. Heat is exchanged during that brief contact, but the particle and droplet never actually touch, because the vapor layer forms a high-pressure zone that the droplets cannot overcome.

"Once that vapor layer forms, it would take infinite force to bring the droplet and the particle together," Fan said.

In the computer simulations, the high-pressure zone sometimes pushed back against the heated droplet so that it bounced away, or it broke up when it rebounded.

When Fan's team compared the simulations to experiments in the lab, the behavior of the droplets matched almost exactly.

Scientists can apply this finding in industries such as oil refining, where hot-and-cold objects routinely interact. For example, the Ohio State researchers are now testing how different mixes of particles and droplets affect heat flow to help the droplets evaporate.

Source: Ohio State University

Explore further: Scientists observe quantum superconductor-metal transition and superconducting glass

add to favorites email to friend print save as pdf

Related Stories

Water-shedding surfaces can be made to last

Sep 20, 2013

Steam condensation is key to the worldwide production of electricity and clean water: It is part of the power cycle that drives 85 percent of all electricity-generating plants and about half of all desalination ...

Recommended for you

Better thermal-imaging lens from waste sulfur

22 minutes ago

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

11 hours ago

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...