How red blood cells nuke their nuclei

Feb 10, 2008

Unlike the rest of the cells in your body, your red blood cells lack nuclei. That quirk dates back to the time when mammals began to evolve. Other vertebrates such as fish, reptiles, and birds, have red cells that contain nuclei that are inactive. Losing the nucleus enables the red blood cell to contain more oxygen-carrying hemoglobin, thus enabling more oxygen to be transported in the blood and boosting our metabolism.

Scientists have struggled to understand the mechanism by which maturing red blood cells eject their nuclei. Now, researchers in the lab of Whitehead Member Harvey Lodish have modeled the complete process in vitro in mice, reporting their findings in Nature Cell Biology online on February 10, 2008. The first mechanistic study of how a red blood cell loses its nucleus, the research sheds light on one of the most essential steps in mammalian evolution.

It was known that as a mammalian red blood cell nears maturity, a ring of actin filaments contracts and pinches off a segment of the cell that contains the nucleus, a type of “cell division.” The nucleus is then swallowed by macrophages (one of the immune system’s quick-response troops). The genes and signaling pathways that drive the pinching-off process, however, were a mystery.

“Using a cell-culture system we were actually able to watch the cells divide, go through hemoglobin synthesis and then lose their nuclei,” says Lodish, who is also a professor of biology at Massachusetts Institute of Technology. “We discovered that the proteins Rac 1, Rac 2 and mDia2 are involved in building the ring of actin filaments.”

“We were very interested in that Rac 1 and Rac 2 were involved in disposing the nuclei of red blood cells,” says Peng Ji, lead author and postdoctoral researcher in the Lodish lab. “These proteins are known for their role in creating actin fibers in many body cells, and a necessary component of many important cellular functions including cell division that support cell growth.”

His cell-culture system began with red blood cell precursors drawn from an embryonic mouse liver (in mammalian embryos, the liver is the main producer of such cells, rather than bone marrow as in adults). The cultured cells, synchronized to develop together, divided four or five times before losing their nuclei and becoming immature red blood cells. The researchers used simple fluorescence-based assays that enabled them to probe the changes in the red blood cells through the different stages leading up to the loss of the nucleus.

The researchers plan to further investigate the entire process of red blood cell formation, which may lead to insights about genetic alterations that underlie certain red blood cell disorders.

“During normal cell division, each daughter cell receives half the DNA,” comments Lodish. “In this case, when the red blood cell divides, one daughter cell gets all the DNA. What’s fascinating is that in this case, that daughter cell gets eaten by macrophages. Until now, scientists were unable to study these cells because they were unable to see them.”

Source: Whitehead Institute for Biomedical Research

Explore further: Aging white lion euthanized at Ohio zoo

add to favorites email to friend print save as pdf

Related Stories

Controlling light on a chip at the single-photon level

Dec 16, 2014

Integrating optics and electronics into systems such as fiber-optic data links has revolutionized how we transmit information. A second revolution awaits as researchers seek to develop chips in which individual ...

Rohinni's Lightpaper invites innovative lighting

Nov 30, 2014

Rohinni's Twitter statement on what this company is all about is quite simple: We print light. Print light? This Coeur d'Alene, Idaho-based company is introducing its Lightpaper, with a promotional video ...

Study confirms controversial nitrite hypothesis

Dec 12, 2014

Understanding how nitrite can improve conditions such as hypertension, heart attack and stroke has been the object of worldwide research studies. New research from Wake Forest University has potentially moved the science ...

Nanotechnology against malaria parasites

Dec 09, 2014

Malaria parasites invade human red blood cells, they then disrupt them and infect others. Researchers at the University of Basel and the Swiss Tropical and Public Health Institute have now developed so-called ...

Recommended for you

A vegetarian carnivorous plant

Dec 19, 2014

Carnivorous plants catch and digest tiny animals in order and derive benefits for their nutrition. Interestingly the trend towards vegetarianism seems to overcome carnivorous plants as well. The aquatic carnivorous bladderwort, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.