Modeling the Chemical Reactions of Nanoparticles

Mar 27, 2006
Chemist Jan Hrbek
Chemist Jan Hrbek

As science enters the world of the very small, researchers will be searching for new ways to study nanoparticles and their properties. For the past several years, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have been experimenting with new methods for preparing nanoparticles on metal supports, with the aim of creating model catalyst systems to better study the special reactivity of nano-sized catalyst particles.

Brookhaven’s Jan Hrbek will review several of the Lab’s results at the 231st national meeting of the American Chemical Society at the Georgia World Congress Center in Atlanta, GA.

Catalysis, the acceleration of a chemical reaction, is tremendously important as an industrial process, underlying most of our energy supply (oil-to-fuel conversion, for example) and 80 percent of the products of the chemical industry. There is a substantial need to understand how catalysts work, and learn to design and make better catalysts. The work at Brookhaven is aimed at understanding how the detailed atomic structures of model systems of certain classes of catalysts contribute to their activity. Hrbek’s talk will review work in making models of nanometer scale particles that are the active material in many catalyst particles.

Solid surfaces often act as catalysts by binding molecules, weakening their internal bonds and allowing them to react to form new molecular products. These solid surfaces are usually nanometer-sized particles supported on micron-sized powder particles. Reacting gases or liquids flow over them to undergo reactions into the desired products.

Examples of active materials include metals, metal oxides, and other metal compounds (metal sulfides and metal carbides, for example). These are known collectively as heterogeneous catalysts since they are in a separate (solid) phase from the reacting gas or liquid stream that flows over them. Very tiny particles allow most of the solid material’s atoms to be at the surface, in contact with the reacting stream. This fine dispersion is necessary to guarantee efficient use of the catalyst material. The nanometer size also is often important in improving the reactivity and selectivity of the particles. These tiny particles are often strained and the strain can promote formation of more stable active sites for a particular chemical transformation.

“Actual catalysts are very complex, not well controlled materials, often with a wide range of particle sizes and structures,” Hrbek said. “It is often difficult to sort out which atomic sites are catalytically active. The goals of these model studies are to be able to determine atomic structures of the reactive sites, and to understand how reactions occur at those sites. This work ultimately aims to strengthen our ability to design better catalysts.”

Among the most interesting results of the Brookhaven studies is a new method to create well-defined nanoparticles of metal compounds that are of catalytic interest.

“Reactive layer assisted deposition, or RLAD, allows us to make well-dispersed, reasonably uniform nanoparticles of metal compounds on well-defined supports,” Hrbek said. “These can then be structurally characterized on the nano scale and their reactivity evaluated by using modern surface-sensitive techniques. This opens an interesting opportunity to examine catalytic activity in metal compounds that were also atomically characterized.”

Several other laboratories studying nanoparticles of metal compounds have already adopted the RLAD method.

“It is a challenge to form uniform particles in this size range, to disperse them uniformly on the substrate, and to ‘look’ at them with advanced microscopies to understand their structure,” Hrbek said. “The tools being applied to form and study the particles are one aspect of Brookhaven’s growing capabilities in nanoscience.”

Source: BNL

Explore further: Nanoribbon film keeps glass ice-free: Team refines deicing film that allows radio frequencies to pass

add to favorites email to friend print save as pdf

Related Stories

Catalytic gold nanoclusters promise rich chemical yields

Aug 25, 2014

( —Old thinking was that gold, while good for jewelry, was not of much use for chemists because it is relatively nonreactive. That changed a decade ago when scientists hit a rich vein of discoveries ...

Coffee withdrawal

Aug 14, 2014

Coffee: It leaves some people feeling fit and refreshed; in others, it makes their heart race. Scientists have developed several decaffeination processes to allow even people who react badly to caffeine to ...

Self-assembly of gold nanoparticles into small clusters

Aug 04, 2014

Researchers at HZB in cooperation with Humboldt-Universitaet zu Berlin have made an astonishing observation: they were investigating the formation of gold nanoparticles in a solvent and observed that the ...

Recommended for you

For electronics beyond silicon, a new contender emerges

2 hours ago

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

4 hours ago

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

4 hours ago

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

User comments : 0