Light activated anticancer drug targeted to DNA using cisplatin like sub-units

Mar 27, 2006

One of the most effective chemotherapy drugs against cancer is cisplatin because it attaches to cancer DNA and disrupts repair. However, it also kills healthy tissue. Many scientists are creating alternative drugs or cisplatin analogs in attempts to find treatments without side effects. One approach to analog development is light activated drugs, or photodynamic therapy (PDT).

Now a Virginia Tech chemistry-biology research team that has been working on both non-cisplatin drugs and cisplatin analogs has combined their findings to create a molecular complex (supramolecule) that exploits cisplatins tumor targeting to deliver a light activated drug.

The latest results from the group's research to create a DNA targeting, light activated anticancer drug was presented at the 231st American Chemical Society national meeting in Atlanta on March 26-30.

Chemistry professor Karen J. Brewer reports that the group has developed supramolecular complexes that combine light-absorbing PDT agents and cisplatin like units. Previous anticancer molecules created by the group have contained platinum-based molecules that bind DNA. They have also developed new light activated systems able to photocleave DNA. This report combines these two approaches to target the drug to DNA using cisplatin like units, directing the light activation to tumor cells and the sub-cellular target, DNA.

"In the past, our light activated systems had to find the DNA within the cell, an often inefficient process. Now we have added the DNA targeting drug," Brewer said. "We were working on cisplatin analogs before, so we have tied it to light activated systems."

Cisplatin begins its interaction with cancer DNA by binding to the nitrogen atoms of the DNA bases, typically guanine. Our new supramolecules use this nitrogen-binding site to hold the light activated drug at the target until signaled to activate. Thus the new supramolecules can be delivered to the tumor site but remain inert until activated by a light signal. Light waves in the therapeutic range – that is, those that can penetrate tissue, are used to activate these new drugs. The researchers are also appending other molecules that emit UV light to track the movement of these drugs within cells.

Source: Virginia Tech

Explore further: The stapes of a neanderthal child points to the anatomical differences with our species

Related Stories

Letting go of the (genetic) apron strings

Mar 20, 2015

A new study from Princeton University sheds light on the handing over of genetic control from mother to offspring early in development. Learning how organisms manage this transition could help researchers ...

What blind beetles can teach us about evolution

Feb 05, 2015

Evolution is often perceived as being a "directional" or "adaptive" process. We often think of species evolving to become stronger or faster, or to have sharper teeth, for example. And we tend to see this ...

Recommended for you

Do government technology investments pay off?

14 hours ago

Studies confirm that IT investments in companies improve productivity and efficiency. University of Michigan professor M.S. Krishnan wondered if the same was true for government.

Study finds assisted housing works, but it could be improved

15 hours ago

Two researchers from the University of Kansas Department of Urban Planning have just completed a study on the locations of assisted housing units and assisted households across the nation. It examines one of the key issues ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.