Light activated anticancer drug targeted to DNA using cisplatin like sub-units

Mar 27, 2006

One of the most effective chemotherapy drugs against cancer is cisplatin because it attaches to cancer DNA and disrupts repair. However, it also kills healthy tissue. Many scientists are creating alternative drugs or cisplatin analogs in attempts to find treatments without side effects. One approach to analog development is light activated drugs, or photodynamic therapy (PDT).

Now a Virginia Tech chemistry-biology research team that has been working on both non-cisplatin drugs and cisplatin analogs has combined their findings to create a molecular complex (supramolecule) that exploits cisplatins tumor targeting to deliver a light activated drug.

The latest results from the group's research to create a DNA targeting, light activated anticancer drug was presented at the 231st American Chemical Society national meeting in Atlanta on March 26-30.

Chemistry professor Karen J. Brewer reports that the group has developed supramolecular complexes that combine light-absorbing PDT agents and cisplatin like units. Previous anticancer molecules created by the group have contained platinum-based molecules that bind DNA. They have also developed new light activated systems able to photocleave DNA. This report combines these two approaches to target the drug to DNA using cisplatin like units, directing the light activation to tumor cells and the sub-cellular target, DNA.

"In the past, our light activated systems had to find the DNA within the cell, an often inefficient process. Now we have added the DNA targeting drug," Brewer said. "We were working on cisplatin analogs before, so we have tied it to light activated systems."

Cisplatin begins its interaction with cancer DNA by binding to the nitrogen atoms of the DNA bases, typically guanine. Our new supramolecules use this nitrogen-binding site to hold the light activated drug at the target until signaled to activate. Thus the new supramolecules can be delivered to the tumor site but remain inert until activated by a light signal. Light waves in the therapeutic range – that is, those that can penetrate tissue, are used to activate these new drugs. The researchers are also appending other molecules that emit UV light to track the movement of these drugs within cells.

Source: Virginia Tech

Explore further: Liberal democracy is possible in Muslim-majority countries

add to favorites email to friend print save as pdf

Related Stories

Сalculations with nanoscale smart particles

Aug 19, 2014

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Biomarkers of the deep

Jul 25, 2014

Tucked away in the southwest corner of Spain is a unique geological site that has fascinated astrobiologists for decades. The Iberian Pyrite Belt (IPB) in Spain's Río Tinto area is the largest known deposit ...

Recommended for you

Dinosaur footprints set for public display in Utah

3 hours ago

A dry wash full of 112-million-year-old dinosaur tracks that include an ankylosaurus, dromaeosaurus and a menacing ancestor of the Tyrannosaurus rex, is set to open to the public this fall in Utah.

Fossil arthropod went on the hunt for its prey

14 hours ago

A new species of carnivorous crustacean has been identified, which roamed the seas 435 million years ago, grasping its prey with spiny limbs before devouring it. The fossil is described and details of its lifestyle are published ...

User comments : 0