Obesity may be wired in the brain, rat study suggests

Feb 05, 2008

A predisposition for obesity might be wired into the brain from the start, suggests a new study of rats in the February issue of Cell Metabolism.

Rats selectively bred to be prone to obesity show abnormalities in a part of the brain critical for appetite control, the researchers found. Specifically, the researchers show that the obese rats harbor defects in neurons of the arcuate nucleus (ARH) of the hypothalamus, which leaves their brains less responsive to the hunger-suppressing hormone leptin.

“The neurodevelopmental differences in these animals can be seen as early as the first week,” said Sebastien Bouret of the University of Southern California. “The results show that obesity can be wired into the brain from early life. The three-million-dollar question now is how to get around this problem.”

It is increasingly accepted that obesity results from a combination of genetic and environmental factors, the researchers said. Rodent models of obesity can provide valuable insights into the biological processes underlying the development of obesity in humans. The “diet-induced obese” (DIO) rats used in the current study are particularly suited to the task, according to Bouret, because their tendency to become overweight shares several features with human obesity, including the contribution of many genes.

Previous studies had suggested that the brains of DIO rats are insensitive to leptin, the researchers added. Circulating leptin, produced by fat tissue, acts as a signal to the brain about the body’s energy status. Leptin is also critical for the initial development of ARH neurons.

In the new study, the researchers examined the obesity-prone rats for signs of abnormal brain development. They found that the animals’ brains had fewer neural projections from the ARH, a deficiency that persisted into adulthood. Those projections are needed to relay the leptin signal received by the ARH to other parts of the hypothalamus, Bouret said.

The researchers found further evidence that those changes in brain wiring stem from a reduced responsiveness of the brain to leptin’s action during development.

“It seems [in the case of these rats] that appetite and obesity are built into the brain,” Bouret said. While their condition might be ameliorated by exercising and eating right, he added, the findings suggest that the propensity to gain weight can’t be reversed.

But there is hope yet. It’s possible that treatments delivered during a critical early period of development might be capable of rewiring the brain, Bouret said.

Source: Cell Press

Explore further: Diabetes drug found in freshwater is a potential cause of intersex fish

Related Stories

Researchers image and measure tubulin transport in cilia

Jan 26, 2015

Defective cilia can lead to a host of diseases and conditions in the human body—from rare, inherited bone malformations to blindness, male infertility, kidney disease and obesity. Scientists knew that somehow ...

Cataloguing 10 million human gut microbial genes

Nov 25, 2014

Over the past several years, research on bacteria in the digestive tract (gut microbiome) has confirmed the major role they play in our health. An international consortium, in which INRA participates, has developed the most ...

Recommended for you

York's anti-malarial plant given Chinese approval

Apr 24, 2015

A new hybrid plant used in anti-malarial drug production, developed by scientists at the University of York's Centre for Novel Agricultural Products (CNAP), is now registered as a new variety in China.

The appeal of being anti-GMO

Apr 24, 2015

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.