Scientists identify two new forms of ice

Mar 24, 2006
Scientists identify two new forms of ice
Ice XIV, at around 160 degrees Celcius the coldest ice ever found, has a simple molecular structure. Credit: Science.

Scientists have discovered two previously unknown forms of ice, frozen at temperatures of around minus 160 degrees Celsius. The researchers say they have solved the atomic structures of the new forms, which they have named ice XIII and XIV.

The results, just published in the journal Science, could help improve our understanding of the role of water in life-supporting processes. Furthermore, the research team believes the new ices may also occur on the icy moons of the outer planets.

A team from Oxford University in collaboration with the CCLRC (Council for the Central Laboratory of the Research Councils), and UCL (University College London) carried out the research. For a long time scientists have known about twelve different ice forms, but this finding confirms what many have suspected, that other ices exist at much lower temperatures.

Dr Christoph Salzmann, from the Chemistry department of Oxford University, said: 'We knew from theory that these ice forms should exist. The problem, however, was the low temperatures at which they were expected to form. We therefore had to search for a catalyst, which would enhance molecular mobility at low temperatures and encourage the phases to form.'

Professor Paolo Radaelli, from CCLRC, said: 'The key to this discovery was to persuade water molecules to order fully – something they are usually very reluctant to do.'

Dr Salzmann's method was uncannily simple - just a few drops of hydrochloric acid and some carefully applied pressure did the trick. They were then able to measure the temperatures of formation, which were at around minus 160 degrees Celsius, and a beam from the powerful neutron instruments at ISIS, the world's leading pulsed neutron facility in Oxfordshire, revealed the atomic structures.

Professor John Finney, from UCL, who was also a member of the team that discovered the previous ice form, ice XII, said: 'Scientists have been searching for such a formation recipe for over forty years. Having now found it, the way looks open to finally completing our knowledge of the crystalline behaviour of this amazing - yet critically important - simple molecule.'

This discovery gives scientists a better knowledge of the hydrogen bond in the many crystalline forms of ice. It also improves the current understanding of the water molecule in chemical and biological processes, and could enhance computational models used in chemistry and structural biology.

Understanding the behaviour of water at low temperatures provides greater insight into the state and behaviour of water in the solar system. High-pressure low temperature ice forms are thought to be present on the outer planets possibly as the result of meteoroid impacts on their surfaces.

Source: University of Oxford

Explore further: Flatland, we hardly knew ye: Unique 1-D metasurface acts as polarized beam splitter, allows novel form of holography

add to favorites email to friend print save as pdf

Related Stories

Scientists find new toughening mechanism for ceramics

Oct 10, 2014

Researchers have identified a previously unknown mechanism that makes a rare kind of ceramics super-tough. The findings may show a way to compose super-hard and super-tough ceramics for industrial application, ...

Under Rainier's crater, a natural laboratory like no other

Oct 03, 2014

Counting all the ups and downs, he had climbed more than 15,000 feet to get here - past yawning crevasses and over cliffs where a single misstep could send a rope team tumbling. His party was pummeled by a lightning storm ...

Recommended for you

Three-dimensional metamaterials with a natural bent

19 hours ago

Metamaterials, a hot area of research today, are artificial materials engineered with resonant elements to display properties that are not found in natural materials. By organizing materials in a specific way, scientists ...

Scientists develop compact medical imaging device

Oct 23, 2014

Scientists at the MIRA research institute, in collaboration with various companies, have developed a prototype of a handy device that combines echoscopy (ultrasound) with photoacoustics. Combining these two ...

User comments : 0