Revolution in understanding of ion channel regulation

Jan 30, 2008

A study at Rush University Medical Center in Chicago published this week in the online version of Biophysical Journal proposes that bubbles may control the opening and closing of ion channels. This new understanding of the channels that control much of life in health and disease provides a vital piece of the molecular puzzle.

The work of experts in mathematics, physics and molecular biology at Rush has produced a new explanation for how ion channels open and close. This discovery provides a springboard to a better understanding of many diseases and their treatment.

The body, like so many other mechanical and computing systems, is controlled by the on and off response of its smallest components. “Life is controlled by switches and valves, in the same way that computers and cars are, but life’s valves are proteins that open and close, providing gates for pathways for ions to enter cells,” says Robert S. Eisenberg, PhD, professor and chairman of molecular biophysics and physiology at Rush University. “The problem is, if anything goes wrong with these ion channel gates, disease results or, worse death.”

For years, researchers have been searching for the mechanism that opens and closes the pore-like ion channels that are an integral part of each cell membrane. These atomic-size channels control the movement of ions, or charged electrical particles, across the cell membrane. This, in turn, controls the function of the cell. An enormous range of biological functions are controlled by these channels, and failures in these channels produce many of the diseases that plague mankind.

“Through rigorous analysis, we propose that bubbles form and break inside the tiny pores of the channel and that these bubbles are the gates that have been long sought by so many scientists,” says Eisenberg. “The bubbles create a vacuum that cannot conduct electricity as the surrounding water does; therefore, the channel is effectively in the ‘off’ position. When the bubble breaks, the channel is in the ‘on’ position. It’s a rather effective, efficient and elegant design.”

The understanding of the link between ion channels and disease is a relatively recent development. Researchers have found that many diseases — for example, cystic fibrosis, or even such complex and systemic diseases as type 2 diabetes — involve malfunctions of ion channels. When the valves in a car or in plumbing get stuck, the car can stop or the sink can overflow. In the same way, when gates in the ion channels of your cells get stuck, there can be serious health consequences.

“An amazing number of diseases have been found to be related to ion channels,” says Eisenberg. “Heart disease is an excellent example. Channels control the flow of electricity in the heart. If we could simply fix what’s happening electrically in the heart, we could change the course of the disease and its impact on our society.”

The proposal that bubbles are indeed the gates of ion channels needs further study. The Rush group and its collaborators are proposing a sophisticated and plausible guess. Testing that guess will be most informative.

“This type of paradigm shift is fantastically important, because we can save researchers from wasting valuable time and energy heading in the wrong direction,” says Eisenberg. “This new insight will really change the way people are doing their work and could bring us amazing new leaps in our understanding of certain disease processes and how to manage and ultimately cure them.”

Source: Rush University Medical Center

Explore further: DNA may have had humble beginnings as nutrient carrier

add to favorites email to friend print save as pdf

Related Stories

Synthetic molecule makes cancer self-destruct

Aug 11, 2014

Researchers from The University of Texas at Austin and five other institutions have created a molecule that can cause cancer cells to self-destruct by ferrying sodium and chloride ions into the cancer cells.

Recommended for you

Sharks off the menu and on the tourist trail in Palau

40 minutes ago

In many places swimmers might prefer to avoid sharks, but wetsuit-clad tourists in Palau clamour to dive among the predators thanks to a pioneering conservation initiative that has made them one of the country's ...

DNA may have had humble beginnings as nutrient carrier

19 hours ago

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

19 hours ago

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

No-take marine reserves a no-win for seahorses

19 hours ago

A UTS study on how seahorses are faring in no-take marine protected areas (MPAs) in NSW has revealed that where finishing is prohibited, seahorses aren't doing as well.

User comments : 0