Controlling optical binding creates trap for optical matter

Mar 22, 2006

Optical binding forces can be precisely controlled to realize a trap for self-organized optical matter, MIT researchers will report in an upcoming issue of Physical Review Letters.

Optical binding forces, reported in 1989 by Burns et al., manifest themselves as soon as multiple particles interact in an electromagnetic field. So far, these forces have been experimentally verified but they have never been actively controlled to achieve desired properties.

"Our paper shows for the first time a precise control of these forces," said Tomasz M. Grzegorczyk, a research scientist in MIT's Research Laboratory of Electronics. This is illustrated "by balancing the radiation pressure from a laser light, a work pioneered by Ashkin in the 1970s-1980s, to realize an optical trap.

"Such control can be used to create reconfigurable field and force distributions with customizable properties in space and time, which have important applications in biology for the manipulation of small living organisms and in astronomy for the design of a giant space laser trapped mirror as postulated by Labeyrie in 1979."

Source: MIT

Explore further: A 'quantum leap' in encryption technology

add to favorites email to friend print save as pdf

Related Stories

A layered nanostructure held together by DNA

Mar 20, 2014

(Phys.org) —Dreaming up nanostructures that have desirable optical, electronic, or magnetic properties is one thing. Figuring out how to make them is another. A new strategy uses the binding properties ...

Nanoparticle pinpoints blood vessel plaques

Feb 06, 2014

A team of researchers, led by scientists at Case Western Reserve University, has developed a multifunctional nanoparticle that enables magnetic resonance imaging (MRI) to pinpoint blood vessel plaques caused by atherosclerosis. ...

MU researchers develop advanced 3-D 'force microscope'

Dec 17, 2013

Membrane proteins are the "gatekeepers" that allow information and molecules to pass into and out of a cell. Until recently, the microscopic study of these complex proteins has been restricted due to limitations of "force ...

Recommended for you

A 'quantum leap' in encryption technology

17 hours ago

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Using antineutrinos to monitor nuclear reactors

18 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Bake your own droplet lens

19 hours ago

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

How do liquid foams block sound?

20 hours ago

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

Probing the sound of a quantum dot

20 hours ago

(Phys.org) —Physicists at the University of Sydney have discovered a method of using microwaves to probe the sounds of a quantum dot, a promising platform for building a quantum computer.

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

How do liquid foams block sound?

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

Google+ boss leaving the company

The executive credited with bringing the Google+ social network to life is leaving the Internet colossus after playing a key role there for nearly eight years.