Controlling optical binding creates trap for optical matter

Mar 22, 2006

Optical binding forces can be precisely controlled to realize a trap for self-organized optical matter, MIT researchers will report in an upcoming issue of Physical Review Letters.

Optical binding forces, reported in 1989 by Burns et al., manifest themselves as soon as multiple particles interact in an electromagnetic field. So far, these forces have been experimentally verified but they have never been actively controlled to achieve desired properties.

"Our paper shows for the first time a precise control of these forces," said Tomasz M. Grzegorczyk, a research scientist in MIT's Research Laboratory of Electronics. This is illustrated "by balancing the radiation pressure from a laser light, a work pioneered by Ashkin in the 1970s-1980s, to realize an optical trap.

"Such control can be used to create reconfigurable field and force distributions with customizable properties in space and time, which have important applications in biology for the manipulation of small living organisms and in astronomy for the design of a giant space laser trapped mirror as postulated by Labeyrie in 1979."

Source: MIT

Explore further: Vibrational motion of a single molecule measured in real time

add to favorites email to friend print save as pdf

Related Stories

Water molecules favor negative charges

Jul 16, 2014

(Phys.org) —In the presence of charged substances, H2O molecules favor associating with elements with a negative electrical charge rather than a positive electric charge. EPFL researchers have published ...

Nucleoids and the structure of life

Jul 07, 2014

(Phys.org) —In the brave new world of three-parent embryos several inherited mitochondrial diseases can potentially be solved. One slightly dubious argument used by its champions to assuage equally dubious ...

A layered nanostructure held together by DNA

Mar 20, 2014

(Phys.org) —Dreaming up nanostructures that have desirable optical, electronic, or magnetic properties is one thing. Figuring out how to make them is another. A new strategy uses the binding properties ...

Nanoparticle pinpoints blood vessel plaques

Feb 06, 2014

A team of researchers, led by scientists at Case Western Reserve University, has developed a multifunctional nanoparticle that enables magnetic resonance imaging (MRI) to pinpoint blood vessel plaques caused by atherosclerosis. ...

Recommended for you

User comments : 0