Songbirds' Brains Provide Clues to Human Speech

Jan 16, 2008

Analyzing how the brains of songbirds respond to singing patterns has provided new information about how humans learn to communicate with each other, according to Duke University researchers.

A study in the latest edition of Nature reveals that individual cells in the brain display remarkably similar patterns of activity whether a sound associated with communication is being heard or produced. The study was performed using songbirds that sing back and forth in the wild to defend territory.

The researchers think that these specialized cells in the brain may be especially important for helping an individual be both a sender and a receiver in communication.

"The ability of the animals to communicate with each other through song and their ability to learn their vocal signals from other birds provide a powerful system for understanding how the brain enables learned forms of communication, including human speech," said Professor Richard Mooney, a Duke Medical Center neuroscientist who led the research. The study was supported by the National Institute of Deafness and Other Communication Disorders and the National Science Foundation.

"These birds have a small and distinct repertoire of songs that they can broadcast over a hundred yards or more," Mooney said. "We found certain neurons responded nearly identically when the bird heard or sang a certain song in its repertoire. This correspondence provides the first demonstration of so-called 'mirror neurons' in vocal communication."

The researchers used a miniature device that recorded the activity of single neurons in the brains of swamp sparrows as they listened to songs presented through a speaker and subsequently sang them back.

"We feel this work is especially unique because making neural recordings in freely behaving wild songbirds like we did is a bit like balancing a small pebble on the end of a sewing needle while in a stiff breeze," Mooney said.

When the bird was listening, particular cells could only be excited by a specific song in the bird's repertoire or by a highly similar song of another swamp sparrow. The same cells also showed a nearly identical pattern of activity when the bird sang the song.

Mooney explains that the cells' activities were not simply the result of the bird hearing its own song, but instead arose from motor circuits in the bird's brain. "It's as if the motor program in the bird's brain is not only generating the commands that are used to produce the song, but also providing an internal estimation of what those signals should sound like when they are eventually transmitted out of the brain to the vocal organ," he said.

"Our discovery of these neurons and the fact that they are located in an area of the songbird brain important to singing and song perception strengthens the idea that mirror neurons play an important role in communication," said Duke neuroscientist Jonathan Prather, Ph.D., first author of the paper.

Auditory-vocal mirror neurons are located in an area of the songbird brain that is analogous to speech areas in the human brain. "In humans, mirror neurons similar to those we found in the songbird could be the mechanism by which we rapidly decode speech and generate verbal responses," Mooney said.

Other members of the research team included Duke University biologists Stephen Nowicki and Susan Peters.

Source: Duke University Medical Center

Explore further: Experts 'grasping at straws' to save near-extinct rhino

add to favorites email to friend print save as pdf

Related Stories

International team maps 'big bang' of bird evolution

Dec 11, 2014

The genomes of modern birds tell a story of how they emerged and evolved after the mass extinction that wiped out dinosaurs and almost everything else 66 million years ago. That story is now coming to light, ...

Pair bonding reinforced in the brain

Oct 28, 2014

In addition to their song, songbirds also have an extensive repertoire of calls. While the species-specific song must be learned as a young bird, most calls are, as in the case of all other birds, innate. ...

Male spectacled warblers are innovative singers

Jan 14, 2014

The several variables in the song of every male spectacled warbler could play a crucial role in the mating, defending territory and recognition between individuals of this species. Studying their acoustic ...

Vampires and Shades of Grey: How media shapes who we are

Jan 08, 2014

Are you a Homer Simpson or a Dexter? How about a Clair Huxtable or a Carrie Bradshaw? Chances are you don't think of yourself as a doughnut-loving oaf, a brilliant serial killer, an unflappable power-mom/lawyer ...

Frogs without ears hear with their mouth

Sep 02, 2013

Gardiner's frogs from the Seychelles islands, one of the smallest frogs in the world, do not possess a middle ear with an eardrum yet can croak themselves, and hear other frogs. An international team of scientists ...

Recommended for you

'Hairclip' protein mechanism explained

11 hours ago

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.