Climate influence on deep sea populations

Jan 16, 2008

In an article published in the January 16 issue of PLoS ONE, Joan B. Company and colleagues at the Institut de Ciències del Mar (CSIC) in Spain describe a mechanism of interaction across ecosystems showing how a climate-driven phenomenon originated in shelf environments controls the biological processes of a deep-sea living resource.

The progressive depletion of world fisheries is one of the key socio-economical issues of the forthcoming century. However, amid this worrying scenario, Company’s study demonstrates how a climate-induced phenomenon occurring at a decadal time-scale, such as the formation of dense shelf waters and its subsequent downslope cascading can repeatedly reverse the general trend of overexploitation of a deep-sea living resource.

Strong downslope currents associated with intense cascading events displace the population of the shrimp Aristeus antennatus from the fishing grounds, producing a temporary fishery collapse. However, nutritive particles brought by cascading waters to deep regions cause an enhancement of its recruitment process and an increase of its total landings during the following years.

These new findings resolve the paradox of a long-overexploited fishery that has not collapsed after 70 years of intense deep-sea trawling. The results will have a high socio-economic impact, since this species is the most valuable deep-sea living resource in the Mediterranean Sea. Because the cascading of dense water from continental shelves is a global phenomenon whose effects on biological processes were not considered in the past, it is hypothesized that its influence on deep-sea ecosystems and fisheries worldwide should be more important than previously thought.

In this sense, applying the findings to a global fishery scenario, shelf water cascading sites identified worldwide could be considered as regions favorable for deep-sea demersal fisheries, just as the upwelling zones are considered favorable regions for pelagic fisheries. This paper is particularly timely, since these new results will be of special relevance to the current debate on the shift from shelf to deep-sea fisheries.

Citation: Company JB, Puig P, Sardà F, Palanques A, Latasa M, et al (2008) Climate Influence on Deep Sea Populations. PLoS ONE 3(1): e1431.doi:10.1371/journal.pone.0001431 (www.plosone.org/doi/pone.0001431)

Source: Public Library of Science

Explore further: Isotope study shows which urban ants love junk food

Related Stories

Future US Navy: Robotic sub-hunters, deepsea pods

2 hours ago

The robotic revolution that transformed warfare in the skies will soon extend to the deep sea, with underwater spy "satellites," drone-launching pods on the ocean floor and unmanned ships hunting submarines.

Europe resumes Galileo satnav deployment (Update)

14 hours ago

Europe resumed deployment of its beleaguered Galileo satnav programme on Friday, launching a pair of satellites seven months after a rocket malfunction sent two multi-million euro orbiters awry.

Italian olive tree disease stumps EU

14 hours ago

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

Festo has BionicANTs communicating by the rules for tasks

14 hours ago

Germany-based automation company Festo, focused on technologies for tasks, turns to nature for inspiration, trying to take the cues from how nature performs tasks so efficiently. "Whether it's energy efficiency, ...

Recommended for you

Isotope study shows which urban ants love junk food

6 hours ago

Research from North Carolina State University finds that some - but not all - of the ant species on the streets of Manhattan have developed a taste for human food, offering insight into why certain ants are ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.