Behavioral studies show UV contributes to marsupial color vision

Mar 20, 2006

Work reported this week provides new evidence that marsupials, like primates, have functional color vision based on three different types of color photoreceptor cones--but unlike primates, a component of marsupial color vision includes sensitivity to ultraviolet wavelengths.

In the study, researchers employed behavioral tests to show that at least one type of marsupial uses its detection of UV light as part of its ability to discriminate between colors. The new work is reported by a group including Dr. Catherine Arrese of the University of Western Australia and appears in the March 21st issue of Current Biology.

The most prevalent system of color vision in mammals is known as dichromacy, which is a color-detection system based on two types of cone photoreceptors--those sensitive to short (SWS) and medium-to-long (M/LWS) wavelengths. Trichromacy, which is used by humans, was thought to be unique to primates that have re-evolved a third cone type from the duplication of the MWS/LWS gene, which enables the discrimination of green-red colors. But the researchers' previous physiological studies in Australian marsupials provided original evidence for the potential of trichromatic color vision in mammals other than primates.

The findings were consistent in several distantly related marsupial species, indicating that the presence of three spectrally distinct cone types, sensitive to short (SWS), medium (MWS), and long (LWS) wavelengths, is a common feature of Australian marsupials. However, since evidence of color vision cannot be derived from physiological studies alone, marsupial trichromacy remained to be established with an unequivocal behavioural approach.

In the new study, the researchers therefore investigated the contribution of the distinct cone types to color vision in the fat-tailed dunnart (Sminthopsis crassicaudata), using additive color mixture experiments in which choice between a colored light (training wavelength) and an additive mixture of two different colored lights (primary wavelengths) is based exclusively on differences in chromatic content.

The results revealed that the fat-tailed dunnart possesses functional trichromacy, but that its version of trichromatic vision differs from that of primates in that it includes sensitivity to UV wavelengths. In addition to furthering our knowledge of how mammalian color vision functions, the findings provide an opportunity to re-examine theories on the evolution of this key sensory capacity.

Citation: Arrese et al.: "Behavioural evidence for marsupial trichromacy." Publishing in Current Biology 16, R193-R194, March 21, 2006.

Cource: Cell Press

Explore further: Researchers discover low-grade nonwoven cotton picks up 50 times own weight of oil

add to favorites email to friend print save as pdf

Related Stories

Cordilleran terrane collage

1 hour ago

In the August 2014 issue of Lithosphere, Steve Israel of the Yukon Geological Survey and colleagues provide conclusions regarding the North American Cordillera that they say "are provocative in that they b ...

Google Glass: Paramedics' next tool

1 hour ago

While Google Glass' potential as a consumer device remains to be seen, Lauren Rubinson-Morris is excited about its possibilities in her workplace.

Recommended for you

Soccer's key role in helping migrants to adjust

14 hours ago

New research from the University of Adelaide has for the first time detailed the important role the sport of soccer has played in helping migrants to adjust to their new lives in Australia.

How dinosaurs shrank, survived and evolved into birds

16 hours ago

That starling at your birdfeeder? It is a dinosaur. The chicken on your dinner plate? Also a dinosaur. That mangy seagull scavenging for chips on the beach? Apart from being disgusting, yet again it is a ...

User comments : 0