Animated Movie of Ice

Jan 07, 2008

An animated movie shows an ordered structure dissolving little by little into a disordered mess after a light pulse: Swedish researchers from the University of Uppsala have used a computer to simulate ice melting after it is heated with a short light pulse.

As they report in the journal Angewandte Chemie, the absorbed energy first causes the OH bonds to oscillate. After a few picoseconds (10-12 s) the energy is converted into rotational and translational energy, which causes the crystal to melt, though crystalline domains remain visible for quite a while.

The common form of ice crystals is known as hexagonal ice. In this form the oxygen atoms of the water molecules are arranged in a tetrahedral lattice. Each water molecule is bound to four neighboring molecules by means of bridging hydrogen bonds, leading to an average of two bridges per molecule. In water, there are, on average, only 1.75 bridging hydrogen bonds per molecule.

What happens in the process of melting? Carl Caleman and David van der Spoel have now successfully used a computer to simulate “snapshots” of melting ice crystals. These molecular dynamics simulations are ideal for gaining a better understanding of processes like melting or freezing because they make it possible to simultaneously describe both the structure and the dynamics of a system with atomic resolution and with a time resolution in the femtosecond (10-15 s) range.

The simulation demonstrated that the energy of the laser pulse initially causes the OH bonds in the water molecules to vibrate. Immediately after the pulse, the vibrational energy reaches a maximum. After about a picosecond, most of the vibrational energy has been transformed into rotational energy.

The molecules begin to spin out of their positions within the crystal, breaking the bridging hydrogen bonds. After about 3 to 6 picoseconds, the rotations diminish in favor of translational motion. The molecules are now able to move freely and the crystal structure collapses. This process starts out locally, at individual locations within the crystal.

Once the symmetry of the structure is broken, the likelihood of melting processes occurring in the area immediately surrounding the crystal defect rises significantly. The melting process thus spreads out from this point little by little. At other locations the ice can maintain its crystalline structure a little longer.

A movie is available online at xray.bmc.uu.se/molbiophys/images/Movies/melt.mpg

Citation: David van der Spoel, Picosecond Melting of Ice by an Infrared Laser Pulse: A Simulation Study, Angewandte Chemie International Edition, doi: 10.1002/anie.200703987

Source: Angewandte Chemie

Explore further: Researchers use neutron scattering and supercomputing to study shape of a protein involved in cancer

add to favorites email to friend print save as pdf

Related Stories

WaterNest 100: A pod-shaped vision of floating household

Mar 16, 2015

An article adaptation (from Environment@Harvard Volume 3, Issue 2) on the Harvard University Center for the Environment website said "Around the world, oceans are warming and expanding. Vast ice sheets are crumbling and melting into ...

Ocean pipes 'not cool,' would end up warming climate

Mar 19, 2015

To combat global climate change caused by greenhouse gases, alternative energy sources and other types of environmental recourse actions are needed. There are a variety of proposals that involve using vertical ...

Arctic sea ice hits record low

Mar 19, 2015

Arctic sea ice has reached its lowest winter point since satellite observations began in the late 1970s, raising concerns about faster ice melt and rising seas due to global warming, US officials said Thursday.

Researchers study fluctuations in solar radiation

Mar 18, 2015

The Sun is the Earth's principal source of energy and climate driver. Yet sometimes it sends more light to the Earth than other times. Astronomers working with Natalie Krivova at the Max Planck Institute ...

More giant craters spotted in Russia's far north

Mar 12, 2015

Russian scientists have now discovered seven giant craters in remote Siberia, a geologist told AFP on Thursday, adding that the mysterious phenomenon was believed to be linked to climate change.

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.